

MODUL PRAKTIKUM PERTEMUAN 9 - 15

KODE MATA KULIAH CPD121

MATA KULIAH PEMROSESAN DATA TERSEBAR (PDT)

OLEH

Ir. Munawar, MMSI, M.Com, Ph.D

Ir. Nizirwan Anwar, MT

FAKULTAS ILMU KOMPUTER

UNIVERSITAS ESA UNGGUL
2018

DAFTAR ISI

MODUL PRAKTIKUM

Modul 9 Concistency-and-Replication

Modul 10 Fault-Tolerance

Modul 11 Security

Modul 12 Distributed-Object-System

Modul 13 Distributed File System

Modul 14 Distributed Web Based System

Modul 15 Distribution Coordinator Based System

DAFTAR PUSTAKA

Ajay D. Kshemkalyani and Mukesh Singhal, (2008), Distributed Computing - Principles,

Algorithms, and Systems, Cambridge University Press, ISBN-13 978-0-511-39341-9

CognosTutorial – Simple Easy Learning, (2016),

https://www.tutorialspoint.com/cognos/cognos_tutorial.pdf di-akses tanggal 5 Maret

2018 di Jakarta

Couloris et. al. (2012), Distributed Systems Concepts and Design, Fifth Edition. Addison

Wesley, ISBN 13: 978-0-13-214301-1

Maarten van Steen and Andrew S. Tanenbaum, (2017), Distributed Systems : Prinsiples and

Paradigms. 3 th Pearson Education Inc.

P M. Tamer Özsu and Patrick Valduriez, (2011), Principles of Distributed Database Systems,

Third Edition, Springer Publishing ISBN 978-1-4419-8833-1

https://www.tutorialspoint.com/cognos/cognos_tutorial.pdf

CPD121 Pemrosesan Data Tersebar (PDT)

FAKULTAS ILMU KOMPUTER UNIVERSITAS ESA UNGGUL @2018

Modul 9

Concistency-and-Replication

MongoDB

38

Replication is the process of synchronizing data across multiple servers. Replication

provides redundancy and increases data availability with multiple copies of data on

different database servers. Replication protects a database from the loss of a single server.

Replication also allows you to recover from hardware failure and service interruptions.

With additional copies of the data, you can dedicate one to disaster recovery, reporting,
or backup.

Why Replication?

 To keep your data safe

 High (24*7) availability of data

 Disaster recovery

 No downtime for maintenance (like backups, index rebuilds, compaction)

 Read scaling (extra copies to read from)

 Replica set is transparent to the application

How Replication Works in MongoDB

MongoDB achieves replication by the use of replica set. A replica set is a group

of mongod instances that host the same data set. In a replica, one node is primary node

that receives all write operations. All other instances, such as secondaries, apply

operations from the primary so that they have the same data set. Replica set can have
only one primary node.

 Replica set is a group of two or more nodes (generally minimum 3 nodes are

required).

 In a replica set, one node is primary node and remaining nodes are secondary.

 All data replicates from primary to secondary node.

 At the time of automatic failover or maintenance, election establishes for primary

and a new primary node is elected.

 After the recovery of failed node, it again joins the replica set and works as a
secondary node.

A typical diagram of MongoDB replication is shown in which client application always

interact with the primary node and the primary node then replicates the data to the

secondary nodes.

19. MongoDB ─ Replication

MongoDB

39

Replica Set Features

 A cluster of N nodes

 Any one node can be primary

 All write operations go to primary

 Automatic failover

 Automatic recovery

 Consensus election of primary

Set Up a Replica Set

In this tutorial, we will convert standalone MongoDB instance to a replica set. To convert
to replica set, following are the steps:

 Shutdown already running MongoDB server.

 Start the MongoDB server by specifying -- replSet option. Following is the basic

syntax of --replSet:

mongod --port "PORT" --dbpath "YOUR_DB_DATA_PATH" --replSet
"REPLICA_SET_INSTANCE_NAME"

MongoDB

40

Example

mongod --port 27017 --dbpath "D:\set up\mongodb\data" --replSet rs0

 It will start a mongod instance with the name rs0, on port 27017.

 Now start the command prompt and connect to this mongod instance.

 In Mongo client, issue the command rs.initiate() to initiate a new replica set.

 To check the replica set configuration, issue the command rs.conf(). To check the
status of replica set issue the command rs.status().

Add Members to Replica Set

To add members to replica set, start mongod instances on multiple machines. Now start
a mongo client and issue a command rs.add().

Syntax

The basic syntax of rs.add() command is as follows:

>rs.add(HOST_NAME:PORT)

Example

Suppose your mongod instance name is mongod1.net and it is running on port 27017.
To add this instance to replica set, issue the command rs.add() in Mongo client.

>rs.add("mongod1.net:27017")

>

You can add mongod instance to replica set only when you are connected to primary node.

To check whether you are connected to primary or not, issue the
command db.isMaster() in Mongo client.

MongoDB

41

Sharding is the process of storing data records across multiple machines and it is

MongoDB's approach to meeting the demands of data growth. As the size of the data

increases, a single machine may not be sufficient to store the data nor provide an

acceptable read and write throughput. Sharding solves the problem with horizontal scaling.

With sharding, you add more machines to support data growth and the demands of read
and write operations.

Why Sharding?

 In replication, all writes go to master node

 Latency sensitive queries still go to master

 Single replica set has limitation of 12 nodes

 Memory can't be large enough when active dataset is big

 Local disk is not big enough

 Vertical scaling is too expensive

Sharding in MongoDB
The following diagram shows the sharding in MongoDB using sharded cluster.

20. MongoDB ─ Sharding

MongoDB

42

In the following diagram, there are three main components:

 Shards: Shards are used to store data. They provide high availability and data

consistency. In production environment, each shard is a separate replica set.

 Config Servers: Config servers store the cluster's metadata. This data contains a

mapping of the cluster's data set to the shards. The query router uses this metadata

to target operations to specific shards. In production environment, sharded clusters

have exactly 3 config servers.

 Query Routers: Query routers are basically mongo instances, interface with client

applications and direct operations to the appropriate shard. The query router

processes and targets the operations to shards and then returns results to the

clients. A sharded cluster can contain more than one query router to divide the

client request load. A client sends requests to one query router. Generally, a

sharded cluster have many query routers.

CPD121 Pemrosesan Data Tersebar (PDT)

FAKULTAS ILMU KOMPUTER UNIVERSITAS ESA UNGGUL @2018

Modul 10

Fault-Tolerance

CPD121 Pemrosesan Data Tersebar (PDT)

FAKULTAS ILMU KOMPUTER UNIVERSITAS ESA UNGGUL @2018

Modul 11

Security

Data Warehousing

60

The objective of a data warehouse is to make large amounts of data easily accessible to the

users, hence allowing the users to extract information about the business as a whole. But we

know that there could be some security restrictions applied on the data that can be an

obstacle for accessing the information. If the analyst has a restricted view of data, then it is
impossible to capture a complete picture of the trends within the business.

The data from each analyst can be summarized and passed on to management where

the different summaries can be aggregated. As the aggregations of summaries cannot be

the same as that of the aggregation as a whole, it is possible to miss some information

trends in the data unless someone is analyzing the data as a whole.

Security Requirements

Adding security features affect the performance of the data warehouse, therefore it is

important to determine the security requirements as early as possible. It is difficult to
add security features after the data warehouse has gone live.

During the design phase of the data warehouse, we should keep in mind what data

sources may be added later and what would be the impact of adding those data sources.

We should consider the following possibilities during the design phase.

 Whether the new data sources will require new security and/or audit restrictions
to be implemented?

 Whether the new users added who have restricted access to data that is already
generally available?

This situation arises when the future users and the data sources are not well known. In

such a situation, we need to use the knowledge of business and the objective of data

warehouse to know likely requirements.

The following activities get affected by security measures:

 User access

 Data load

 Data movement

 Query generation

User Access

We need to first classify the data and then classify the users on the basis of the data they can

access. In other words, the users are classified according to the data they can access.

Data Classification

The following two approaches can be used to classify the data:

 Data can be classified according to its sensitivity. Highly-sensitive data is classified as
highly restricted and less-sensitive data is classified as less restrictive.

16. DWH ─ Security

Data Warehousing

61

 Data can also be classified according to the job function. This restriction allows

only specific users to view particular data. Here we restrict the users to view only

that part of the data in which they are interested and are responsible for.

There are some issues in the second approach. To understand, let's have an example.

Suppose you are building the data warehouse for a bank. Consider that the data being

stored in the data warehouse is the transaction data for all the accounts. The question

here is, who is allowed to see the transaction data. The solution lies in classifying the

data according to the function.

User Classification

The following approaches can be used to classify the users:

 Users can be classified as per the hierarchy of users in an organization, i.e., users
can be classified by departments, sections, groups, and so on.

 Users can also be classified according to their role, with people grouped across
departments based on their role.

Classification Based on Department

Let's have an example of a data warehouse where the users are from sales and

marketing department. We can have security by top-to-down company view, with access

centered on the different departments. But there could be some restrictions on users at
different levels. This structure is shown in the following diagram.

But if each department accesses different data, then we should design the security

access for each department separately. This can be achieved by departmental data

marts. Since these data marts are separated from the data warehouse, we can enforce

separate security restrictions on each data mart. This approach is shown in the following

figure.

Data Warehousing

62

Classification Based on Role

If the data is generally available to all the departments, then it is useful to follow the

role access hierarchy. In other words, if the data is generally accessed by all the

departments, then apply security restrictions as per the role of the user. The role access
hierarchy is shown in the following figure.

Audit Requirements

Auditing is a subset of security, a costly activity. Auditing can cause heavy overheads on

the system. To complete an audit in time, we require more hardware and therefore, it is

recommended that wherever possible, auditing should be switched off. Audit
requirements can be categorized as follows:

 Connections

 Disconnections

Data Warehousing

63

 Data access

 Data change

Note: For each of the above-mentioned categories, it is necessary to audit success,

failure, or both. From the perspective of security reasons, the auditing of failures are

very important. Auditing of failure is important because they can highlight unauthorized
or fraudulent access.

Network Requirements

Network security is as important as other securities. We cannot ignore the network
security requirement. We need to consider the following issues:

 Is it necessary to encrypt data before transferring it to the data warehouse?

 Are there restrictions on which network routes the data can take?

These restrictions need to be considered carefully. Following are the points to

remember:

 The process of encryption and decryption will increase overheads. It would

require more processing power and processing time.

 The cost of encryption can be high if the system is already a loaded system
because the encryption is borne by the source system.

Data Movement

There exist potential security implications while moving the data. Suppose we need to

transfer some restricted data as a flat file to be loaded. When the data is loaded into the

data warehouse, the following questions are raised:

 Where is the flat file stored?

 Who has access to that disk space?

If we talk about the backup of these flat files, the following questions are raised:

 Do you backup encrypted or decrypted versions?

 Do these backups need to be made to special tapes that are stored separately?

 Who has access to these tapes?

Some other forms of data movement like query result sets also need to be considered.

The questions raised while creating the temporary table are as follows:

 Where is that temporary table to be held?

 How do you make such table visible?

We should avoid the accidental flouting of security restrictions. If a user with access to

the restricted data can generate accessible temporary tables, data can be visible to non-

authorized users. We can overcome this problem by having a separate temporary area
for users with access to restricted data.

Data Warehousing

64

Documentation

The audit and security requirements need to be properly documented. This will be treated as
a part of justification. This document can contain all the information gathered from:

 Data classification

 User classification

 Network requirements

 Data movement and storage requirements

 All auditable actions

Impact of Security on Design

Security affects the application code and the development timescales. Security affects
the following area:

 Application development

 Database design

 Testing

Application Development

Security affects the overall application development and it also affects the design of the

important components of the data warehouse such as load manager, warehouse

manager, and query manager. The load manager may require checking code to filter

record and place them in different locations. More transformation rules may also be

required to hide certain data. Also there may be requirements of extra metadata to

handle any extra objects.

To create and maintain extra views, the warehouse manager may require extra codes to

enforce security. Extra checks may have to be coded into the data warehouse to prevent

it from being fooled into moving data into a location where it should not be available.

The query manager requires the changes to handle any access restrictions. The query

manager will need to be aware of all extra views and aggregations.

Database Design

The database layout is also affected because when security measures are implemented,

there is an increase in the number of views and tables. Adding security increases the

size of the database and hence increases the complexity of the database design and

management. It will also add complexity to the backup management and recovery plan.

Testing

Testing the data warehouse is a complex and lengthy process. Adding security to the

data warehouse also affects the testing time complexity. It affects the testing in the

following two ways:

 It will increase the time required for integration and system testing.

 There is added functionality to be tested which will increase the size of the testing

suite.

CPD121 Pemrosesan Data Tersebar (PDT)

FAKULTAS ILMU KOMPUTER UNIVERSITAS ESA UNGGUL @2018

Modul 12

Distributed-Object-System

Object-Oriented Analysis & Design

3

The object model visualizes the elements in a software application in terms of objects. In

this chapter, we will look into the basic concepts and terminologies of object–oriented

systems.

Objects and Classes

The concepts of objects and classes are intrinsically linked with each other and form the

foundation of object–oriented paradigm.

Object

An object is a real-world element in an object–oriented environment that may have a

physical or a conceptual existence. Each object has:

 Identity that distinguishes it from other objects in the system.

 State that determines the characteristic properties of an object as well as the

values of the properties that the object holds.

 Behavior that represents externally visible activities performed by an object in

terms of changes in its state.

Objects can be modelled according to the needs of the application. An object may have a

physical existence, like a customer, a car, etc.; or an intangible conceptual existence,

like a project, a process, etc.

Class

A class represents a collection of objects having same characteristic properties that

exhibit common behavior. It gives the blueprint or description of the objects that can be

created from it. Creation of an object as a member of a class is called instantiation.

Thus, object is an instance of a class.

The constituents of a class are:

 A set of attributes for the objects that are to be instantiated from the class.

Generally, different objects of a class have some difference in the values of the

attributes. Attributes are often referred as class data.

 A set of operations that portray the behavior of the objects of the class.

Operations are also referred as functions or methods.

Example

Let us consider a simple class, Circle, that represents the geometrical figure circle in a

two–dimensional space. The attributes of this class can be identified as follows:

 x–coord, to denote x–coordinate of the center

 y–coord, to denote y–coordinate of the center

 a, to denote the radius of the circle

2. OOAD ─ Object Model

Object-Oriented Analysis & Design

4

Some of its operations can be defined as follows:

 findArea(), method to calculate area

 findCircumference(), method to calculate circumference

 scale(), method to increase or decrease the radius

During instantiation, values are assigned for at least some of the attributes. If we create

an object my_circle, we can assign values like x-coord : 2, y-coord : 3, and a : 4 to

depict its state. Now, if the operation scale() is performed on my_circle with a scaling

factor of 2, the value of the variable a will become 8. This operation brings a change in

the state of my_circle, i.e., the object has exhibited certain behavior.

Encapsulation and Data Hiding

Encapsulation

Encapsulation is the process of binding both attributes and methods together within a

class. Through encapsulation, the internal details of a class can be hidden from outside.

It permits the elements of the class to be accessed from outside only through the

interface provided by the class.

Data Hiding

Typically, a class is designed such that its data (attributes) can be accessed only by its

class methods and insulated from direct outside access. This process of insulating an

object’s data is called data hiding or information hiding.

Example

In the class Circle, data hiding can be incorporated by making attributes invisible from

outside the class and adding two more methods to the class for accessing class data,

namely:

 setValues(), method to assign values to x-coord, y-coord, and a

 getValues(), method to retrieve values of x-coord, y-coord, and a

Here the private data of the object my_circle cannot be accessed directly by any method

that is not encapsulated within the class Circle. It should instead be accessed through

the methods setValues() and getValues().

Message Passing

Any application requires a number of objects interacting in a harmonious manner.

Objects in a system may communicate with each other using message passing. Suppose

a system has two objects: obj1 and obj2. The object obj1 sends a message to object

obj2, if obj1 wants obj2 to execute one of its methods.

The features of message passing are:

 Message passing between two objects is generally unidirectional.

 Message passing enables all interactions between objects.

 Message passing essentially involves invoking class methods.

Object-Oriented Analysis & Design

5

 Objects in different processes can be involved in message passing.

Inheritance

Inheritance is the mechanism that permits new classes to be created out of existing

classes by extending and refining its capabilities. The existing classes are called the base

classes/parent classes/super-classes, and the new classes are called the derived

classes/child classes/subclasses. The subclass can inherit or derive the attributes and

methods of the super-class(es) provided that the super-class allows so. Besides, the

subclass may add its own attributes and methods and may modify any of the super-class

methods. Inheritance defines an “is – a” relationship.

Example

From a class Mammal, a number of classes can be derived such as Human, Cat, Dog,

Cow, etc. Humans, cats, dogs, and cows all have the distinct characteristics of

mammals. In addition, each has its own particular characteristics. It can be said that a

cow “is – a” mammal.

Types of Inheritance
 Single Inheritance : A subclass derives from a single super-class.

 Multiple Inheritance : A subclass derives from more than one super-classes.

 Multilevel Inheritance : A subclass derives from a super-class which in turn is

derived from another class and so on.

 Hierarchical Inheritance : A class has a number of subclasses each of which

may have subsequent subclasses, continuing for a number of levels, so as to

form a tree structure.

 Hybrid Inheritance : A combination of multiple and multilevel inheritance so as

to form a lattice structure.

The following figure depicts the examples of different types of inheritance.

Object-Oriented Analysis & Design

6

Polymorphism

Polymorphism is originally a Greek word that means the ability to take multiple forms. In

object-oriented paradigm, polymorphism implies using operations in different ways,

depending upon the instance they are operating upon. Polymorphism allows objects with

different internal structures to have a common external interface. Polymorphism is

particularly effective while implementing inheritance.

Example

Object-Oriented Analysis & Design

7

Let us consider two classes, Circle and Square, each with a method findArea(). Though

the name and purpose of the methods in the classes are same, the internal

implementation, i.e., the procedure of calculating area is different for each class. When

an object of class Circle invokes its findArea() method, the operation finds the area of

the circle without any conflict with the findArea() method of the Square class.

Generalization and Specialization

Generalization and specialization represent a hierarchy of relationships between classes,

where subclasses inherit from super-classes.

Generalization

In the generalization process, the common characteristics of classes are combined to

form a class in a higher level of hierarchy, i.e., subclasses are combined to form a

generalized super-class. It represents an “is – a – kind – of” relationship. For example,

“car is a kind of land vehicle”, or “ship is a kind of water vehicle”.

Specialization

Specialization is the reverse process of generalization. Here, the distinguishing features

of groups of objects are used to form specialized classes from existing classes. It can be

said that the subclasses are the specialized versions of the super-class.

The following figure shows an example of generalization and specialization.

Links and Association

Link

A link represents a connection through which an object collaborates with other objects.

Rumbaugh has defined it as “a physical or conceptual connection between objects”.

Through a link, one object may invoke the methods or navigate through another object.

A link depicts the relationship between two or more objects.

Association

Object-Oriented Analysis & Design

8

Association is a group of links having common structure and common behavior.

Association depicts the relationship between objects of one or more classes. A link can

be defined as an instance of an association.

Degree of an Association

Degree of an association denotes the number of classes involved in a connection. Degree

may be unary, binary, or ternary.

 A unary relationship connects objects of the same class.

 A binary relationship connects objects of two classes.

 A ternary relationship connects objects of three or more classes.

Cardinality Ratios of Associations

Cardinality of a binary association denotes the number of instances participating in an

association. There are three types of cardinality ratios, namely:

 One–to–One : A single object of class A is associated with a single object of class B.

 One–to–Many : A single object of class A is associated with many objects of class B.

 Many–to–Many : An object of class A may be associated with many objects of class

B and conversely an object of class B may be associated with many objects of class A.

Aggregation or Composition

Aggregation or composition is a relationship among classes by which a class can be

made up of any combination of objects of other classes. It allows objects to be placed

directly within the body of other classes. Aggregation is referred as a “part–of” or “has–

a” relationship, with the ability to navigate from the whole to its parts. An aggregate

object is an object that is composed of one or more other objects.

Example

In the relationship, “a car has–a motor”, car is the whole object or the aggregate, and

the motor is a “part–of” the car. Aggregation may denote:

 Physical containment : Example, a computer is composed of monitor, CPU,

mouse, keyboard, and so on.

 Conceptual containment : Example, shareholder has–a share.

Benefits of Object Model

Now that we have gone through the core concepts pertaining to object orientation, it

would be worthwhile to note the advantages that this model has to offer.

The benefits of using the object model are:

 It helps in faster development of software.

Object-Oriented Analysis & Design

9

 It is easy to maintain. Suppose a module develops an error, then a programmer

can fix that particular module, while the other parts of the software are still up

and running.

 It supports relatively hassle-free upgrades.

 It enables reuse of objects, designs, and functions.

 It reduces development risks, particularly in integration of complex systems.

Object-Oriented Analysis & Design

10

We know that the Object-Oriented Modelling (OOM) technique visualizes things in an

application by using models organized around objects. Any software development

approach goes through the following stages:

 Analysis,

 Design, and

 Implementation.

In object-oriented software engineering, the software developer identifies and organizes

the application in terms of object-oriented concepts, prior to their final representation in

any specific programming language or software tools.

Phases in Object-Oriented Software Development

The major phases of software development using object–oriented methodology are

object-oriented analysis, object-oriented design, and object-oriented implementation.

Object–Oriented Analysis

In this stage, the problem is formulated, user requirements are identified, and then a

model is built based upon real–world objects. The analysis produces models on how the

desired system should function and how it must be developed. The models do not

include any implementation details so that it can be understood and examined by any

non–technical application expert.

Object–Oriented Design

Object-oriented design includes two main stages, namely, system design and object

design.

System Design

In this stage, the complete architecture of the desired system is designed. The system is

conceived as a set of interacting subsystems that in turn is composed of a hierarchy of

interacting objects, grouped into classes. System design is done according to both the

system analysis model and the proposed system architecture. Here, the emphasis is on

the objects comprising the system rather than the processes in the system.

Object Design

In this phase, a design model is developed based on both the models developed in the

system analysis phase and the architecture designed in the system design phase. All the

classes required are identified. The designer decides whether:

 new classes are to be created from scratch,

 any existing classes can be used in their original form, or

 new classes should be inherited from the existing classes.

3. OOAD ─ Object-Oriented System

Object-Oriented Analysis & Design

11

The associations between the identified classes are established and the hierarchies of

classes are identified. Besides, the developer designs the internal details of the classes

and their associations, i.e., the data structure for each attribute and the algorithms for

the operations.

Object–Oriented Implementation and Testing

In this stage, the design model developed in the object design is translated into code in

an appropriate programming language or software tool. The databases are created and

the specific hardware requirements are ascertained. Once the code is in shape, it is

tested using specialized techniques to identify and remove the errors in the code.

CPD121 Pemrosesan Data Tersebar (PDT)

FAKULTAS ILMU KOMPUTER UNIVERSITAS ESA UNGGUL @2018

Modul 13

Distributed File System

http://www.tutorialspoint.com/hive/hive_introduction.htm Copyright © tutorialspoint.com

HIVE - INTRODUCTIONHIVE - INTRODUCTION

The term ‘Big Data’ is used for collections of large datasets that include huge volume, high
velocity, and a variety of data that is increasing day by day. Using traditional data management
systems, it is difficult to process Big Data. Therefore, the Apache Software Foundation introduced a
framework called Hadoop to solve Big Data management and processing challenges.

Hadoop
Hadoop is an open-source framework to store and process Big Data in a distributed environment.
It contains two modules, one is MapReduce and another is Hadoop Distributed File System HDFS.

MapReduce: It is a parallel programming model for processing large amounts of structured,
semi-structured, and unstructured data on large clusters of commodity hardware.

HDFS:Hadoop Distributed File System is a part of Hadoop framework, used to store and
process the datasets. It provides a fault-tolerant file system to run on commodity hardware.

The Hadoop ecosystem contains different sub-projects tools such as Sqoop, Pig, and Hive that are
used to help Hadoop modules.

Sqoop: It is used to import and export data to and from between HDFS and RDBMS.

Pig: It is a procedural language platform used to develop a script for MapReduce operations.

Hive: It is a platform used to develop SQL type scripts to do MapReduce operations.

Note: There are various ways to execute MapReduce operations:

The traditional approach using Java MapReduce program for structured, semi-structured,
and unstructured data.
The scripting approach for MapReduce to process structured and semi structured data using
Pig.
The Hive Query Language HiveQLorHQL for MapReduce to process structured data using Hive.

What is Hive
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top
of Hadoop to summarize Big Data, and makes querying and analyzing easy.

Initially Hive was developed by Facebook, later the Apache Software Foundation took it up and
developed it further as an open source under the name Apache Hive. It is used by different
companies. For example, Amazon uses it in Amazon Elastic MapReduce.

Hive is not
A relational database
A design for OnLine Transaction Processing OLTP

A language for real-time queries and row-level updates

Features of Hive
It stores schema in a database and processed data into HDFS.
It is designed for OLAP.
It provides SQL type language for querying called HiveQL or HQL.
It is familiar, fast, scalable, and extensible.

Architecture of Hive

http://www.tutorialspoint.com/hive/hive_introduction.htm

The following component diagram depicts the architecture of Hive:

This component diagram contains different units. The following table describes each unit:

Unit Name Operation

User Interface Hive is a data warehouse infrastructure software that can create interaction
between user and HDFS. The user interfaces that Hive supports are Hive
Web UI, Hive command line, and Hive HD Insight InWindowsserver.

Meta Store Hive chooses respective database servers to store the schema or Metadata
of tables, databases, columns in a table, their data types, and HDFS
mapping.

HiveQL Process
Engine

HiveQL is similar to SQL for querying on schema info on the Metastore. It is
one of the replacements of traditional approach for MapReduce program.
Instead of writing MapReduce program in Java, we can write a query for
MapReduce job and process it.

Execution Engine The conjunction part of HiveQL process Engine and MapReduce is Hive
Execution Engine. Execution engine processes the query and generates
results as same as MapReduce results. It uses the flavor of MapReduce.

HDFS or HBASE Hadoop distributed file system or HBASE are the data storage techniques to
store data into file system.

Working of Hive
The following diagram depicts the workflow between Hive and Hadoop.

The following table defines how Hive interacts with Hadoop framework:

Step No. Operation

1 Execute Query

The Hive interface such as Command Line or Web UI sends query to Driver
anydatabasedriversuchasJDBC, ODBC, etc. to execute.

2 Get Plan

The driver takes the help of query compiler that parses the query to check the
syntax and query plan or the requirement of query.

3 Get Metadata

The compiler sends metadata request to Metastore anydatabase.

4 Send Metadata

Metastore sends metadata as a response to the compiler.

5 Send Plan

The compiler checks the requirement and resends the plan to the driver. Up to
here, the parsing and compiling of a query is complete.

6 Execute Plan

The driver sends the execute plan to the execution engine.

7 Execute Job

Internally, the process of execution job is a MapReduce job. The execution engine
sends the job to JobTracker, which is in Name node and it assigns this job to
TaskTracker, which is in Data node. Here, the query executes MapReduce job.

7.1 Metadata Ops

Meanwhile in execution, the execution engine can execute metadata operations
with Metastore.

8 Fetch Result

The execution engine receives the results from Data nodes.

9 Send Results

The execution engine sends those resultant values to the driver.

10 Send Results

The driver sends the results to Hive Interfaces.

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

http://www.tutorialspoint.com/map_reduce/map_reduce_algorithm.htm Copyright © tutorialspoint.com

MAPREDUCE - ALGORITHMMAPREDUCE - ALGORITHM

The MapReduce algorithm contains two important tasks, namely Map and Reduce.

The map task is done by means of Mapper Class
The reduce task is done by means of Reducer Class.

Mapper class takes the input, tokenizes it, maps and sorts it. The output of Mapper class is used as
input by Reducer class, which in turn searches matching pairs and reduces them.

MapReduce implements various mathematical algorithms to divide a task into small parts and
assign them to multiple systems. In technical terms, MapReduce algorithm helps in sending the
Map & Reduce tasks to appropriate servers in a cluster.

These mathematical algorithms may include the following −

Sorting
Searching
Indexing
TF-IDF

Sorting
Sorting is one of the basic MapReduce algorithms to process and analyze data. MapReduce
implements sorting algorithm to automatically sort the output key-value pairs from the mapper by
their keys.

Sorting methods are implemented in the mapper class itself.

In the Shuffle and Sort phase, after tokenizing the values in the mapper class, the Context
class user − definedclass collects the matching valued keys as a collection.

To collect similar key-value pairs intermediatekeys, the Mapper class takes the help of
RawComparator class to sort the key-value pairs.

The set of intermediate key-value pairs for a given Reducer is automatically sorted by
Hadoop to form key-values K2, V2, V2, … before they are presented to the Reducer.

Searching
Searching plays an important role in MapReduce algorithm. It helps in the combiner phase optional
and in the Reducer phase. Let us try to understand how Searching works with the help of an
example.

Example
The following example shows how MapReduce employs Searching algorithm to find out the details
of the employee who draws the highest salary in a given employee dataset.

http://www.tutorialspoint.com/map_reduce/map_reduce_algorithm.htm

Let us assume we have employee data in four different files − A, B, C, and D. Let us also
assume there are duplicate employee records in all four files because of importing the
employee data from all database tables repeatedly. See the following illustration.

The Map phase processes each input file and provides the employee data in key-value pairs
< k, v >:< empname, salary > . See the following illustration.

The combiner phase searchingtechnique will accept the input from the Map phase as a key-
value pair with employee name and salary. Using searching technique, the combiner will
check all the employee salary to find the highest salaried employee in each file. See the
following snippet.

<k: employee name, v: salary>
Max= the salary of an first employee. Treated as max salary

if(v(second employee).salary > Max){
 Max = v(salary);
}

else{
 Continue checking;
}

The expected result is as follows −

<satish,
26000>

<gopal,
50000>

<kiran,
45000>

<manisha,
45000>

Reducer phase − Form each file, you will find the highest salaried employee. To avoid
redundancy, check all the <k, v> pairs and eliminate duplicate entries, if any. The same
algorithm is used in between the four <k, v> pairs, which are coming from four input files.

The final output should be as follows −

<gopal, 50000>

Indexing
Normally indexing is used to point to a particular data and its address. It performs batch indexing
on the input files for a particular Mapper.

The indexing technique that is normally used in MapReduce is known as inverted index. Search
engines like Google and Bing use inverted indexing technique. Let us try to understand how
Indexing works with the help of a simple example.

Example
The following text is the input for inverted indexing. Here T[0], T[1], and t[2] are the file names and
their content are in double quotes.

T[0] = "it is what it is"
T[1] = "what is it"
T[2] = "it is a banana"

After applying the Indexing algorithm, we get the following output −

"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}

Here "a": {2} implies the term "a" appears in the T[2] file. Similarly, "is": {0, 1, 2} implies the term
"is" appears in the files T[0], T[1], and T[2].

TF-IDF
TF-IDF is a text processing algorithm which is short for Term Frequency − Inverse Document
Frequency. It is one of the common web analysis algorithms. Here, the term 'frequency' refers to
the number of times a term appears in a document.

Term Frequency TF

It measures how frequently a particular term occurs in a document. It is calculated by the number
of times a word appears in a document divided by the total number of words in that document.

TF(the) = (Number of times term the ‘the’ appears in a document) / (Total number of terms
in the document)

Inverse Document Frequency IDF

It measures the importance of a term. It is calculated by the number of documents in the text
database divided by the number of documents where a specific term appears.

While computing TF, all the terms are considered equally important. That means, TF counts the
term frequency for normal words like “is”, “a”, “what”, etc. Thus we need to know the frequent
terms while scaling up the rare ones, by computing the following −

IDF(the) = log_e(Total number of documents / Number of documents with term ‘the’ in it).

The algorithm is explained below with the help of a small example.

Example

Consider a document containing 1000 words, wherein the word hive appears 50 times. The TF for
hive is then 50/1000 = 0.05.

Now, assume we have 10 million documents and the word hive appears in 1000 of these. Then,
the IDF is calculated as log10, 000, 000/1, 000 = 4.

The TF-IDF weight is the product of these quantities − 0.05 × 4 = 0.20.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

http://www.tutorialspoint.com/map_reduce/map_reduce_hadoop_administration.htm Copyright © tutorialspoint.com

MAPREDUCE - HADOOP ADMINISTRATIONMAPREDUCE - HADOOP ADMINISTRATION

This chapter explains Hadoop administration which includes both HDFS and MapReduce
administration.

HDFS administration includes monitoring the HDFS file structure, locations, and the updated
files.

MapReduce administration includes monitoring the list of applications, configuration of
nodes, application status, etc.

HDFS Monitoring
HDFS HadoopDistributedFileSystem contains the user directories, input files, and output files. Use the
MapReduce commands, put and get, for storing and retrieving.

After starting the Hadoop framework daemons by passing the command “start-all.sh” on
“/$HADOOP_HOME/sbin”, pass the following URL to the browser “http://localhost:50070”. You
should see the following screen on your browser.

The following screenshot shows how to browse the browse HDFS.

The following screenshot show the file structure of HDFS. It shows the files in the “/user/hadoop”
directory.

http://www.tutorialspoint.com/map_reduce/map_reduce_hadoop_administration.htm

The following screenshot shows the Datanode information in a cluster. Here you can find one node
with its configurations and capacities.

MapReduce Job Monitoring
A MapReduce application is a collection of jobs Mapjob, Combiner, Partitioner, andReducejob. It is
mandatory to monitor and maintain the following −

Configuration of datanode where the application is suitable.
The number of datanodes and resources used per application.

To monitor all these things, it is imperative that we should have a user interface. After starting the
Hadoop framework by passing the command “start-all.sh” on “/$HADOOP_HOME/sbin”, pass the
following URL to the browser “http://localhost:8080”. You should see the following screen on your
browser.

In the above screenshot, the hand pointer is on the application ID. Just click on it to find the
following screen on your browser. It describes the following −

On which user the current application is running

The application name

Type of that application

Current status, Final status

Application started time, elapsed completedtime, if it is complete at the time of monitoring

The history of this application, i.e., log information

And finally, the node information, i.e., the nodes that participated in running the application.

The following screenshot shows the details of a particular application −

The following screenshot describes the currently running nodes information. Here, the screenshot
contains only one node. A hand pointer shows the localhost address of the running node.

Loading [MathJax]/jax/output/HTML-CSS/jax.js

http://www.tutorialspoint.com/map_reduce/implementation_in_hadoop.htm Copyright © tutorialspoint.com

MAPREDUCE - HADOOP IMPLEMENTATIONMAPREDUCE - HADOOP IMPLEMENTATION

MapReduce is a framework that is used for writing applications to process huge volumes of data on
large clusters of commodity hardware in a reliable manner. This chapter takes you through the
operation of MapReduce in Hadoop framework using Java.

MapReduce Algorithm
Generally MapReduce paradigm is based on sending map-reduce programs to computers where
the actual data resides.

During a MapReduce job, Hadoop sends Map and Reduce tasks to appropriate servers in the
cluster.

The framework manages all the details of data-passing like issuing tasks, verifying task
completion, and copying data around the cluster between the nodes.

Most of the computing takes place on the nodes with data on local disks that reduces the
network traffic.

After completing a given task, the cluster collects and reduces the data to form an
appropriate result, and sends it back to the Hadoop server.

Inputs and Outputs JavaPerspective

The MapReduce framework operates on key-value pairs, that is, the framework views the input to
the job as a set of key-value pairs and produces a set of key-value pair as the output of the job,
conceivably of different types.

The key and value classes have to be serializable by the framework and hence, it is required to
implement the Writable interface. Additionally, the key classes have to implement the
WritableComparable interface to facilitate sorting by the framework.

Both the input and output format of a MapReduce job are in the form of key-value pairs −

Input <k1, v1> -> map -> <k2, v2>-> reduce -> <k3, v3> Output.

Input Output

Map <k1, v1> list < k2, v2 >

Reduce <k2, listv2> list < k3, v3 >

MapReduce Implementation

http://www.tutorialspoint.com/map_reduce/implementation_in_hadoop.htm

The following table shows the data regarding the electrical consumption of an organization. The
table includes the monthly electrical consumption and the annual average for five consecutive
years.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

We need to write applications to process the input data in the given table to find the year of
maximum usage, the year of minimum usage, and so on. This task is easy for programmers with
finite amount of records, as they will simply write the logic to produce the required output, and
pass the data to the written application.

Let us now raise the scale of the input data. Assume we have to analyze the electrical consumption
of all the large-scale industries of a particular state. When we write applications to process such
bulk data,

They will take a lot of time to execute.

There will be heavy network traffic when we move data from the source to the network
server.

To solve these problems, we have the MapReduce framework.

Input Data
The above data is saved as sample.txt and given as input. The input file looks as shown below.

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

Example Program
The following program for the sample data uses MapReduce framework.

package hadoop;

import java.util.*;
import java.io.IOException;
import java.io.IOException;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;

public class ProcessUnits
{
 //Mapper class
 public static class E_EMapper extends MapReduceBase implements
 Mapper<LongWritable, /*Input key Type */
 Text, /*Input value Type*/
 Text, /*Output key Type*/
 IntWritable> /*Output value Type*/
 {
 //Map function
 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable>
output, Reporter reporter) throws IOException
 {
 String line = value.toString();
 String lasttoken = null;
 StringTokenizer s = new StringTokenizer(line,"\t");
 String year = s.nextToken();

 while(s.hasMoreTokens()){
 lasttoken=s.nextToken();
 }

 int avgprice = Integer.parseInt(lasttoken);
 output.collect(new Text(year), new IntWritable(avgprice));
 }
 }

 //Reducer class

 public static class E_EReduce extends MapReduceBase implements
 Reducer< Text, IntWritable, Text, IntWritable >
 {
 //Reduce function
 public void reduce(Text key, Iterator <IntWritable> values, OutputCollector>Text,
IntWritable> output, Reporter reporter) throws IOException
 {
 int maxavg=30;
 int val=Integer.MIN_VALUE;
 while (values.hasNext())
 {
 if((val=values.next().get())>maxavg)
 {
 output.collect(key, new IntWritable(val));
 }
 }
 }
 }

 //Main function

 public static void main(String args[])throws Exception
 {
 JobConf conf = new JobConf(Eleunits.class);

 conf.setJobName("max_eletricityunits");

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(E_EMapper.class);
 conf.setCombinerClass(E_EReduce.class);
 conf.setReducerClass(E_EReduce.class);

 conf.setInputFormat(TextInputFormat.class);
 conf.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 JobClient.runJob(conf);
 }
}

Save the above program into ProcessUnits.java. The compilation and execution of the program
is given below.

Compilation and Execution of ProcessUnits Program
Let us assume we are in the home directory of Hadoop user e. g. /home/hadoop.

Follow the steps given below to compile and execute the above program.

Step 1 − Use the following command to create a directory to store the compiled java classes.

$ mkdir units

Step 2 − Download Hadoop-core-1.2.1.jar, which is used to compile and execute the MapReduce
program. Download the jar from mvnrepository.com. Let us assume the download folder is
/home/hadoop/.

Step 3 − The following commands are used to compile the ProcessUnits.java program and to
create a jar for the program.

$ javac -classpath hadoop-core-1.2.1.jar -d units ProcessUnits.java
$ jar -cvf units.jar -C units/ .

Step 4 − The following command is used to create an input directory in HDFS.

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir

Step 5 − The following command is used to copy the input file named sample.txt in the input
directory of HDFS.

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/sample.txt input_dir

Step 6 − The following command is used to verify the files in the input directory

$HADOOP_HOME/bin/hadoop fs -ls input_dir/

Step 7 − The following command is used to run the Eleunit_max application by taking input files
from the input directory.

$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir output_dir

Wait for a while till the file gets executed. After execution, the output contains a number of input
splits, Map tasks, Reducer tasks, etc.

INFO mapreduce.Job: Job job_1414748220717_0002
completed successfully
14/10/31 06:02:52
INFO mapreduce.Job: Counters: 49

File System Counters

 FILE: Number of bytes read=61
 FILE: Number of bytes written=279400
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0

 HDFS: Number of bytes read=546
 HDFS: Number of bytes written=40

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1

 HDFS: Number of read operations=9
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2 Job Counters

 Launched map tasks=2
 Launched reduce tasks=1
 Data-local map tasks=2

 Total time spent by all maps in occupied slots (ms)=146137
 Total time spent by all reduces in occupied slots (ms)=441
 Total time spent by all map tasks (ms)=14613
 Total time spent by all reduce tasks (ms)=44120

 Total vcore-seconds taken by all map tasks=146137
 Total vcore-seconds taken by all reduce tasks=44120

 Total megabyte-seconds taken by all map tasks=149644288
 Total megabyte-seconds taken by all reduce tasks=45178880

Map-Reduce Framework

 Map input records=5

 Map output records=5
 Map output bytes=45
 Map output materialized bytes=67

 Input split bytes=208
 Combine input records=5
 Combine output records=5

 Reduce input groups=5
 Reduce shuffle bytes=6
 Reduce input records=5
 Reduce output records=5

 Spilled Records=10
 Shuffled Maps =2
 Failed Shuffles=0
 Merged Map outputs=2

 GC time elapsed (ms)=948
 CPU time spent (ms)=5160

 Physical memory (bytes) snapshot=47749120
 Virtual memory (bytes) snapshot=2899349504

 Total committed heap usage (bytes)=277684224

File Output Format Counters

 Bytes Written=40

Step 8 − The following command is used to verify the resultant files in the output folder.

$HADOOP_HOME/bin/hadoop fs -ls output_dir/

Step 9 − The following command is used to see the output in Part-00000 file. This file is
generated by HDFS.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000

Following is the output generated by the MapReduce program −

1981 34

1984 40

1985 45

Step 10 − The following command is used to copy the output folder from HDFS to the local file
system.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000/bin/hadoop dfs -get output_dir
/home/hadoop

Loading [MathJax]/jax/output/HTML-CSS/jax.js

CPD121 Pemrosesan Data Tersebar (PDT)

FAKULTAS ILMU KOMPUTER UNIVERSITAS ESA UNGGUL @2018

Modul 14

Distributed Web Based System

CPD121 Pemrosesan Data Tersebar (PDT)

FAKULTAS ILMU KOMPUTER UNIVERSITAS ESA UNGGUL @2018

Modul 15

Distribution Coordinator Based System

