
 

 

 

MODUL PRAKTIKUM 

DATABASE OBJEK TERDISTRIBUSI (DOT) 

 

 

 

 

 

 
OLEH 

 

IR. NIZIRWAN ANWAR, MT 

 

TRI ISMARDIKO WIDYAWAN, S.KOM, M.KOM 

 

 

 

 

 

 

 

 

 
PROGRAM STUDI TEKNIK INFORMATIKA 

FAKULTAS ILMU KOMPUTER 
UNIVERSITAS ESA UNGGUL  

2017 
 



 

 

 
DAFTAR ISI  

 

MODUL PRAKTIKUM 

 

 

Modul 1  Overview, Advantages, and Enviroment  

Modul 2 Data Modelling, Create and Drop Database, and Create Collection  

Modul 3 Drop Collection, Data Types, Insert Document, and Query Document 

Modul 4 Update Document, Delete Document, Projection, and Limit Records 

Modul 5 Sort Record, Indexing, and Aggregation 

Modul 6 Replication, Sharding, and Create Backup 

Modul 7 Deployment, and Java 

 

 

 

  



 

 

 
 

MODUL 1  

DATABASE OBJEK TER-DISTRIBUSI 

  



MongoDB 

 

2 

 

MongoDB is a cross-platform, document oriented database that provides, high 

performance, high availability, and easy scalability. MongoDB works on concept of 

collection and document. 

Database 

Database is a physical container for collections. Each database gets its own set of files on 
the file system. A single MongoDB server typically has multiple databases. 

Collection 

Collection is a group of MongoDB documents. It is the equivalent of an RDBMS table. A 

collection exists within a single database. Collections do not enforce a schema. Documents 

within a collection can have different fields. Typically, all documents in a collection are of 
similar or related purpose. 

Document 

A document is a set of key-value pairs. Documents have dynamic schema. Dynamic 

schema means that documents in the same collection do not need to have the same set 

of fields or structure, and common fields in a collection's documents may hold different 
types of data. 

The following table shows the relationship of RDBMS terminology with MongoDB. 

RDBMS MongoDB 

Database Database 

Table Collection 

Tuple/Row Document 

column Field 

Table Join Embedded Documents 

Primary Key 
Primary Key (Default key _id provided by 

mongodb itself) 

Database Server and Client 

Mysqld/Oracle mongod 

mysql/sqlplus mongo 

1.  MongoDB ─ Overview 



MongoDB 

 

3 

 

Sample Document 

Following example shows the document structure of a blog site, which is simply a comma 
separated key value pair. 

{ 

   _id: ObjectId(7df78ad8902c) 

   title: 'MongoDB Overview',  

   description: 'MongoDB is no sql database', 

   by: 'tutorials point', 

   url: 'http://www.tutorialspoint.com', 

   tags: ['mongodb', 'database', 'NoSQL'], 

   likes: 100,  

   comments: [  

      { 

         user:'user1', 

         message: 'My first comment', 

         dateCreated: new Date(2011,1,20,2,15), 

         like: 0  

      }, 

      { 

         user:'user2', 

         message: 'My second comments', 

         dateCreated: new Date(2011,1,25,7,45), 

         like: 5 

      } 

   ] 

} 

_id is a 12 bytes hexadecimal number which assures the uniqueness of every document. 

You can provide _id while inserting the document. If you don’t provide then MongoDB 

provides a unique id for every document. These 12 bytes first 4 bytes for the current 

timestamp, next 3 bytes for machine id, next 2 bytes for process id of MongoDB server 
and remaining 3 bytes are simple incremental VALUE. 



MongoDB 

 

4 

 

Any relational database has a typical schema design that shows number of tables and the 
relationship between these tables. While in MongoDB, there is no concept of relationship. 

Advantages of MongoDB over RDBMS 

 Schema less: MongoDB is a document database in which one collection holds 

different documents. Number of fields, content and size of the document can differ 

from one document to another. 

 

 Structure of a single object is clear. 

 

 No complex joins. 

 

 Deep query-ability. MongoDB supports dynamic queries on documents using a 

document-based query language that's nearly as powerful as SQL. 

 

 Tuning. 

 

 Ease of scale-out: MongoDB is easy to scale. 

 

 Conversion/mapping of application objects to database objects not needed. 

 

 Uses internal memory for storing the (windowed) working set, enabling faster 

access of data. 

Why Use MongoDB? 

 Document Oriented Storage: Data is stored in the form of JSON style documents. 

 Index on any attribute 

 Replication and high availability 

 Auto-sharding 

 Rich queries 

 Fast in-place updates 

 Professional support by MongoDB 

Where to Use MongoDB? 

 Big Data 

 Content Management and Delivery 

 Mobile and Social Infrastructure 

 User Data Management 

 Data Hub 

2.  MongoDB ─ Advantages 



MongoDB 

 

5 

 

Let us now see how to install MongoDB on Windows. 

Install MongoDB on Windows 

To install MongoDB on Windows, first download the latest release of MongoDB 

from http://www.mongodb.org/downloads. Make sure you get correct version of MongoDB 

depending upon your Windows version. To get your Windows version, open command 
prompt and execute the following command. 

C:\>wmic os get osarchitecture 

OSArchitecture 

64-bit 

C:\> 

32-bit versions of MongoDB only support databases smaller than 2GB and suitable only 
for testing and evaluation purposes. 

Now extract your downloaded file to c:\ drive or any other location. Make sure the name 

of the extracted folder is mongodb-win32-i386-[version] or mongodb-win32-x86_64-
[version]. Here [version] is the version of MongoDB download. 

Next, open the command prompt and run the following command. 

C:\>move mongodb-win64-* mongodb 

   1 dir(s) moved. 

C:\> 

In case you have extracted the MongoDB at different location, then go to that path by 

using command cd FOOLDER/DIR and now run the above given process. 

MongoDB requires a data folder to store its files. The default location for the MongoDB 

data directory is c:\data\db. So you need to create this folder using the Command Prompt. 
Execute the following command sequence. 

C:\>md data 

C:\md data\db 

If you have to install the MongoDB at a different location, then you need to specify an 

alternate path for \data\db by setting the path dbpath in mongod.exe. For the same, 
issue the following commands. 

 

 

 

 

3.  MongoDB ─ Environment 

http://www.mongodb.org/downloads


MongoDB 

 

6 

 

In the command prompt, navigate to the bin directory present in the MongoDB installation 
folder. Suppose my installation folder is D:\set up\mongodb 

C:\Users\XYZ>d: 

D:\>cd "set up" 

D:\set up>cd mongodb 

D:\set up\mongodb>cd bin 

D:\set up\mongodb\bin>mongod.exe --dbpath "d:\set up\mongodb\data"  

This will show waiting for connections message on the console output, which indicates 

that the mongod.exe process is running successfully. 

Now to run the MongoDB, you need to open another command prompt and issue the 
following command. 

D:\set up\mongodb\bin>mongo.exe 

MongoDB shell version: 2.4.6 

connecting to: test 

>db.test.save( { a: 1 } ) 

>db.test.find() 

{ "_id" : ObjectId(5879b0f65a56a454), "a" : 1 } 

> 

This will show that MongoDB is installed and run successfully. Next time when you run 

MongoDB, you need to issue only commands. 

D:\set up\mongodb\bin>mongod.exe --dbpath "d:\set up\mongodb\data"  

D:\set up\mongodb\bin>mongo.exe 

Install MongoDB on Ubuntu 

Run the following command to import the MongoDB public GPG key − 

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10 

Create a /etc/apt/sources.list.d/mongodb.list file using the following command. 

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen'  

   | sudo tee /etc/apt/sources.list.d/mongodb.list 

Now issue the following command to update the repository − 

sudo apt-get update 

 

 



MongoDB 

 

7 

 

Next install the MongoDB by using the following command − 

apt-get install mongodb-10gen=2.2.3 

In the above installation, 2.2.3 is currently released MongoDB version. Make sure to install 
the latest version always. Now MongoDB is installed successfully. 

Start MongoDB 

sudo service mongodb start 

Stop MongoDB 

sudo service mongodb stop 

Restart MongoDB 

sudo service mongodb restart 

To use MongoDB run the following command. 

mongo 

This will connect you to running MongoDB instance. 

MongoDB Help 

To get a list of commands, type db.help() in MongoDB client. This will give you a list of 

commands as shown in the following screenshot.  

 

 

 



MongoDB 

 

8 

 

 

 

 

 

 

 

 

 

 



MongoDB 

 

9 

 

MongoDB Statistics 

To get stats about MongoDB server, type the command db.stats() in MongoDB client. 

This will show the database name, number of collection and documents in the database. 

Output of the command is shown in the following screenshot. 

 

 

 



 

 

 

MODUL 2 

DATABASE OBJEK TER-DISTRIBUSI 

  



MongoDB 

 

10 

 

Data in MongoDB has a flexible schema.documents in the same collection. They do not 

need to have the same set of fields or structure, and common fields in a collection’s 

documents may hold different types of data. 

Some considerations while designing Schema in MongoDB 

 Design your schema according to user requirements. 

 Combine objects into one document if you will use them together. Otherwise 

separate them (but make sure there should not be need of joins). 

 

 Duplicate the data (but limited) because disk space is cheap as compare to compute 

time. 

 

 Do joins while write, not on read. 

 Optimize your schema for most frequent use cases. 

 Do complex aggregation in the schema. 

Example 

Suppose a client needs a database design for his blog/website and see the differences 
between RDBMS and MongoDB schema design. Website has the following requirements. 

 Every post has the unique title, description and url. 

 

 Every post can have one or more tags. 

 

 Every post has the name of its publisher and total number of likes. 

 

 Every post has comments given by users along with their name, message, data-

time and likes. 

 
 On each post, there can be zero or more comments. 

In RDBMS schema, design for above requirements will have minimum three tables. 

 

4.  MongoDB ─ Data Modelling 



MongoDB 

 

11 

 

While in MongoDB schema, design will have one collection post and the following structure: 

{ 

   _id: POST_ID 

   title: TITLE_OF_POST,  

   description: POST_DESCRIPTION, 

   by: POST_BY, 

   url: URL_OF_POST, 

   tags: [TAG1, TAG2, TAG3], 

   likes: TOTAL_LIKES,  

   comments: [  

      { 

         user:'COMMENT_BY', 

         message: TEXT, 

         dateCreated: DATE_TIME, 

         like: LIKES  

      }, 

      { 

         user:'COMMENT_BY', 

         message: TEXT, 

         dateCreated: DATE_TIME, 

         like: LIKES 

      } 

   ] 

} 

So while showing the data, in RDBMS you need to join three tables and in MongoDB, data 

will be shown from one collection only. 



MongoDB 

 

12 

 

In this chapter, we will see how to create a database in MongoDB. 

The use Command 

MongoDB use DATABASE_NAME is used to create database. The command will create a 

new database if it doesn't exist, otherwise it will return the existing database. 

Syntax 

Basic syntax of use DATABASE statement is as follows: 

use DATABASE_NAME 

Example 

If you want to create a database with name <mydb>, then use DATABASE statement 
would be as follows: 

>use mydb 

switched to db mydb 

To check your currently selected database, use the command db 

>db 

mydb 

If you want to check your databases list, use the command show dbs. 

>show dbs 

local     0.78125GB 

test      0.23012GB 

Your created database (mydb) is not present in list. To display database, you need to 
insert at least one document into it. 

>db.movie.insert({"name":"tutorials point"}) 

>show dbs 

local      0.78125GB 

mydb       0.23012GB 

test       0.23012GB 

In MongoDB default database is test. If you didn't create any database, then collections 

will be stored in test database. 

5.  MongoDB ─ Create Database 



MongoDB 

 

13 

 

In this chapter, we will see how to drop a database using MongoDB command. 

The dropDatabase() Method 

MongoDB db.dropDatabase() command is used to drop a existing database. 

Syntax 

Basic syntax of dropDatabase() command is as follows: 

db.dropDatabase() 

This will delete the selected database. If you have not selected any database, then it will 

delete default 'test' database. 

Example 

First, check the list of available databases by using the command, show dbs. 

>show dbs 

local      0.78125GB 

mydb       0.23012GB 

test       0.23012GB 

> 

If you want to delete new database <mydb>, then dropDatabase() command would be 
as follows: 

>use mydb 

switched to db mydb 

>db.dropDatabase() 

>{ "dropped" : "mydb", "ok" : 1 } 

> 

Now check list of databases. 

>show dbs 

local      0.78125GB 

test       0.23012GB 

> 

 

6.  MongoDB ─ Drop Database 



MongoDB 

 

14 

 

In this chapter, we will see how to create a collection using MongoDB. 

The createCollection() Method 

MongoDB db.createCollection(name, options) is used to create collection. 

Syntax 

Basic syntax of createCollection() command is as follows: 

db.createCollection(name, options) 

In the command, name is name of collection to be created. Options is a document and 

is used to specify configuration of collection. 

Parameter Type Description 

Name String Name of the collection to be created 

Options Document 
(Optional) Specify options about memory 

size and indexing 

 

Options parameter is optional, so you need to specify only the name of the collection. 

Following is the list of options you can use: 

Field Type Description 

capped Boolean 

(Optional) If true, enables a capped collection. Capped 

collection is a fixed size collection that automatically 

overwrites its oldest entries when it reaches its maximum 

size. If you specify true, you need to specify size 

parameter also. 

autoIndexID Boolean 
(Optional) If true, automatically create index on _id field. 

Default value is false. 

size number 

(Optional) Specifies a maximum size in bytes for a capped 

collection. If capped is true, then you need to specify 

this field also. 

max number 
(Optional) Specifies the maximum number of documents 

allowed in the capped collection. 

 

7.  MongoDB ─ Create Collection 



MongoDB 

 

15 

 

While inserting the document, MongoDB first checks size field of capped collection, then it 
checks max field. 

Examples 

Basic syntax of createCollection() method without options is as follows: 

>use test 

switched to db test 

>db.createCollection("mycollection") 

{ "ok" : 1 } 

> 

You can check the created collection by using the command show collections. 

>show collections 

mycollection 

system.indexes 

The following example shows the syntax of createCollection() method with few 
important options: 

>db.createCollection("mycol", { capped : true, autoIndexID : true, size : 
6142800, max : 10000 } ) 

{ "ok" : 1 } 

> 

In MongoDB, you don't need to create collection. MongoDB creates collection 
automatically, when you insert some document. 

>db.tutorialspoint.insert({"name" : "tutorialspoint"}) 

>show collections 

mycol 

mycollection 

system.indexes 

tutorialspoint 

> 



 

 

 

MODUL 3  

DATABASE OBJEK TER-DISTRIBUSI 

  



MongoDB 

 

16 

 

In this chapter, we will see how to drop a collection using MongoDB. 

The drop() Method 

MongoDB's db.collection.drop() is used to drop a collection from the database. 

Syntax 

Basic syntax of drop() command is as follows: 

db.COLLECTION_NAME.drop() 

Example 

First, check the available collections into your database mydb. 

>use mydb 

switched to db mydb 

>show collections 

mycol 

mycollection 

system.indexes 

tutorialspoint> 

Now drop the collection with the name mycollection. 

>db.mycollection.drop() 

true 

> 

Again check the list of collections into database. 

>show collections 

mycol 

system.indexes 

tutorialspoint 

> 

drop() method will return true, if the selected collection is dropped successfully, otherwise 
it will return false. 

8.  MongoDB ─ Drop Collection 



MongoDB 

 

17 

 

MongoDB supports many datatypes. Some of them are: 

 String: This is the most commonly used datatype to store the data. String in 

MongoDB must be UTF-8 valid. 

 

 Integer: This type is used to store a numerical value. Integer can be 32 bit or 64 

bit depending upon your server. 

 

 Boolean: This type is used to store a boolean (true/ false) value. 

 

 Double: This type is used to store floating point values. 

 

 Min/Max Keys: This type is used to compare a value against the lowest and 

highest BSON elements. 

 

 Arrays: This type is used to store arrays or list or multiple values into one key. 

 

 Timestamp: ctimestamp. This can be handy for recording when a document has 

been modified or added. 

 

 Object: This datatype is used for embedded documents. 

 

 Null: This type is used to store a Null value. 

 

 Symbol: This datatype is used identically to a string; however, it's generally 

reserved for languages that use a specific symbol type. 

 

 Date: This datatype is used to store the current date or time in UNIX time format. 

You can specify your own date time by creating object of Date and passing day, 

month, year into it. 

 

 Object ID: This datatype is used to store the document’s ID. 

 

 Binary data: This datatype is used to store binary data. 

 

 Code: This datatype is used to store JavaScript code into the document. 

 

 Regular expression: This datatype is used to store regular expression. 

 

9.  MongoDB ─ Datatypes 



MongoDB 

 

18 

 

In this chapter, we will learn how to insert document in MongoDB collection. 

The insert() Method 

To insert data into MongoDB collection, you need to use MongoDB's insert() or 

save()method. 

Syntax 

The basic syntax of insert() command is as follows − 

>db.COLLECTION_NAME.insert(document) 

Example 

>db.mycol.insert({ 

   _id: ObjectId(7df78ad8902c), 

   title: 'MongoDB Overview',  

   description: 'MongoDB is no sql database', 

   by: 'tutorials point', 

   url: 'http://www.tutorialspoint.com', 

   tags: ['mongodb', 'database', 'NoSQL'], 

   likes: 100 

}) 

Here mycol is our collection name, as created in the previous chapter. If the collection 

doesn't exist in the database, then MongoDB will create this collection and then insert a 

document into it. 

In the inserted document, if we don't specify the _id parameter, then MongoDB assigns a 
unique ObjectId for this document. 

_id is 12 bytes hexadecimal number unique for every document in a collection. 12 bytes 
are divided as follows − 

_id: ObjectId(4 bytes timestamp, 3 bytes machine id, 2 bytes process id, 3 
bytes incrementer) 

To insert multiple documents in a single query, you can pass an array of documents in 
insert() command. 

 

 

 

10.  MongoDB ─ Insert Document 



MongoDB 

 

19 

 

Example 

>db.post.insert([ 

   { 

      title: 'MongoDB Overview',  

      description: 'MongoDB is no sql database', 

      by: 'tutorials point', 

      url: 'http://www.tutorialspoint.com', 

      tags: ['mongodb', 'database', 'NoSQL'], 

      likes: 100 

   }, 

  

   { 

      title: 'NoSQL Database',  

      description: 'NoSQL database doesn't have tables', 

      by: 'tutorials point', 

      url: 'http://www.tutorialspoint.com', 

      tags: ['mongodb', 'database', 'NoSQL'], 

      likes: 20,  

      comments: [  

         { 

            user:'user1', 

            message: 'My first comment', 

            dateCreated: new Date(2013,11,10,2,35), 

            like: 0  

         } 

      ] 

   } 

]) 

To insert the document you can use db.post.save(document) also. If you don't 

specify _id in the document then save() method will work same as insert() method. If 
the save() method. 

 

 



MongoDB 

 

20 

 

In this chapter, we will learn how to query document from MongoDB collection. 

The find() Method 

To query data from MongoDB collection, you need to use MongoDB's find()method. 

Syntax 

The basic syntax of find() method is as follows: 

>db.COLLECTION_NAME.find() 

find()method will display all the documents in a non-structured way. 

The pretty() Method 

To display the results in a formatted way, you can use pretty() method. 

Syntax 

>db.mycol.find().pretty() 

Example 

>db.mycol.find().pretty() 

{ 

   "_id": ObjectId(7df78ad8902c), 

   "title": "MongoDB Overview",  

   "description": "MongoDB is no sql database", 

   "by": "tutorials point", 

   "url": "http://www.tutorialspoint.com", 

   "tags": ["mongodb", "database", "NoSQL"], 

   "likes": "100" 

} 

> 

Apart from find() method, there is findOne() method, that returns only one document. 

 

 

11.  MongoDB ─ Query Document 



MongoDB 

 

21 

 

RDBMS Where Clause Equivalents in MongoDB 

To query the document on the basis of some condition, you can use following operations 

Operation Syntax Example 
RDBMS 

Equivalent 

Equality {<key>:<value>} 
db.mycol.find({"by":"tutorials 
point"}).pretty() 

where by = 

'tutorials 
point' 

Less Than {<key>:{$lt:<value>}} 
db.mycol.find({"likes":{$lt:50}}).prett
y() 

where likes 
< 50 

Less Than 
Equals 

{<key>:{$lte:<value>}} 
db.mycol.find({"likes":{$lte:50}}).pret
ty() 

where likes 
<= 50 

Greater 
Than 

{<key>:{$gt:<value>}} 
db.mycol.find({"likes":{$gt:50}}).pret
ty() 

where likes 
> 50 

Greater 

Than 
Equals 

{<key>:{$gte:<value>}} 
db.mycol.find({"likes":{$gte:50}}).pre
tty() 

where likes 
>= 50 

Not Equals {<key>:{$ne:<value>}} 
db.mycol.find({"likes":{$ne:50}}).pret
ty() 

where likes 
!= 50 

AND in MongoDB 

Syntax 

In the find() method, if you pass multiple keys by separating them by ',' then MongoDB 
treats it as AND condition. Following is the basic syntax of AND − 

>db.mycol.find({key1:value1, key2:value2}).pretty() 

Example 

Following example will show all the tutorials written by 'tutorials point' and whose title is 
'MongoDB Overview'. 

>db.mycol.find({"by":"tutorials point","title": "MongoDB Overview"}).pretty() 

{ 

   "_id": ObjectId(7df78ad8902c), 

   "title": "MongoDB Overview",  

   "description": "MongoDB is no sql database", 

   "by": "tutorials point", 

   "url": "http://www.tutorialspoint.com", 



MongoDB 

 

22 

 

   "tags": ["mongodb", "database", "NoSQL"], 

   "likes": "100" 

} 

> 

For the above given example, equivalent where clause will be ' where by='tutorials 

point' AND title = 'MongoDB Overview' '. You can pass any number of key, value pairs 
in find clause. 

OR in MongoDB 

Syntax 

To query documents based on the OR condition, you need to use $or keyword. Following 

is the basic syntax of OR − 

>db.mycol.find( 

   { 

      $or: [ 

         {key1: value1}, {key2:value2} 

      ] 

   } 

).pretty() 

Example 

Following example will show all the tutorials written by 'tutorials point' or whose title is 
'MongoDB Overview'. 

>db.mycol.find({$or:[{"by":"tutorials point"},{"title": "MongoDB 
Overview"}]}).pretty() 

{ 

   "_id": ObjectId(7df78ad8902c), 

   "title": "MongoDB Overview",  

   "description": "MongoDB is no sql database", 

   "by": "tutorials point", 

   "url": "http://www.tutorialspoint.com", 

   "tags": ["mongodb", "database", "NoSQL"], 

   "likes": "100" } > 

 



MongoDB 

 

23 

 

Using AND and OR Together 

Example 

The following example will show the documents that have likes greater than 100 and 

whose title is either 'MongoDB Overview' or by is 'tutorials point'. Equivalent SQL where 

clause is 'where likes>10 AND (by = 'tutorials point' OR title = 'MongoDB 
Overview')' 

>db.mycol.find({"likes": {$gt:10}, $or: [{"by": "tutorials point"}, 

   {"title": "MongoDB Overview"}]}).pretty() 

{ 

   "_id": ObjectId(7df78ad8902c), 

   "title": "MongoDB Overview",  

   "description": "MongoDB is no sql database", 

   "by": "tutorials point", 

   "url": "http://www.tutorialspoint.com", 

   "tags": ["mongodb", "database", "NoSQL"], 

   "likes": "100" } 

> 

 



 

 

 

MODUL 4 

DATABASE OBJEK TER-DISTRIBUSI 

  



MongoDB 

 

24 

 

MongoDB's update() and save() methods are used to update document into a collection. 

The update() method updates the values in the existing document while the save() method 

replaces the existing document with the document passed in save() method. 

MongoDB Update() Method 

The update() method updates the values in the existing document. 

Syntax 

The basic syntax of update() method is as follows: 

>db.COLLECTION_NAME.update(SELECTIOIN_CRITERIA, UPDATED_DATA) 

Example 

Consider the mycol collection has the following data. 

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"} 

Following example will set the new title 'New MongoDB Tutorial' of the documents whose 
title is 'MongoDB Overview'. 

>db.mycol.update({'title':'MongoDB Overview'},{$set:{'title':'New MongoDB 
Tutorial'}}) 

>db.mycol.find() 

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"New MongoDB Tutorial"} 

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"} 

> 

By default, MongoDB will update only a single document. To update multiple documents, 
you need to set a parameter 'multi' to true. 

>db.mycol.update({'title':'MongoDB Overview'}, 

   {$set:{'title':'New MongoDB Tutorial'}},{multi:true}) 

 

 

 

12.  MongoDB ─ Update Document 



MongoDB 

 

25 

 

MongoDB Save() Method 

The save() method replaces the existing document with the new document passed in the 
save() method. 

Syntax 

The basic syntax of MongoDB save() method is − 

>db.COLLECTION_NAME.save({_id:ObjectId(),NEW_DATA}) 

Example 

Following example will replace the document with the _id '5983548781331adf45ec7'. 

>db.mycol.save( 

   { 

      "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point New 
Topic", 

         "by":"Tutorials Point" 

   } 

) 

>db.mycol.find() 

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"Tutorials Point New Topic", 

   "by":"Tutorials Point"} 

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"} 

> 

 



MongoDB 

 

26 

 

In this chapter, we will learn how to delete a document using MongoDB. 

The remove() Method 

MongoDB's remove() method is used to remove a document from the collection. 

remove() method accepts two parameters. One is deletion criteria and second is justOne 
flag. 

 deletion criteria: (Optional) deletion criteria according to documents will be 

removed. 

 

 justOne: (Optional) if set to true or 1, then remove only one document. 

Syntax 

Basic syntax of remove() method is as follows: 

>db.COLLECTION_NAME.remove(DELLETION_CRITTERIA) 

Example 

Consider the mycol collection has the following data. 

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"} 

Following example will remove all the documents whose title is 'MongoDB Overview'. 

>db.mycol.remove({'title':'MongoDB Overview'}) 

>db.mycol.find() 

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"} 

> 

 

 

 

 

13.  MongoDB ─ Delete Document 



MongoDB 

 

27 

 

Remove Only One 

If there are multiple records and you want to delete only the first record, then set 
justOne parameter in remove() method. 

>db.COLLECTION_NAME.remove(DELETION_CRITERIA,1) 

Remove All Documents 

If you don't specify deletion criteria, then MongoDB will delete whole documents from the 
collection. This is equivalent of SQL's truncate command. 

>db.mycol.remove() 

>db.mycol.find() 

> 

 



MongoDB 

 

28 

 

In MongoDB, projection means selecting only the necessary data rather than selecting 

whole of the data of a document. If a document has 5 fields and you need to show only 3, 

then select only 3 fields from them. 

The find() Method 

MongoDB's find() method, explained in MongoDB Query Document accepts second 

optional parameter that is list of fields that you want to retrieve. In MongoDB, when you 

execute find() method, then it displays all fields of a document. To limit this, you need to 

set a list of fields with value 1 or 0. 1 is used to show the field while 0 is used to hide the 
fields. 

Syntax 

The basic syntax of find() method with projection is as follows: 

>db.COLLECTION_NAME.find({},{KEY:1}) 

Example 

Consider the collection mycol has the following data 

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"} 

Following example will display the title of the document while querying the document. 

>db.mycol.find({},{"title":1,_id:0}) 

{"title":"MongoDB Overview"} 

{"title":"NoSQL Overview"} 

{"title":"Tutorials Point Overview"} 

> 

Please note _id field is always displayed while executing find() method, if you don't want 

this field, then you need to set it as 0. 

 

 

 

 

14.  MongoDB ─ Projection 

http://www.tutorialspoint.com/mongodb/mongodb_query_document.htm


MongoDB 

 

29 

 

In this chapter, we will learn how to limit records using MongoDB. 

The Limit() Method 

To limit the records in MongoDB, you need to use limit() method. The method accepts 

one number type argument, which is the number of documents that you want to be 
displayed. 

Syntax 

The basic syntax of limit() method is as follows: 

>db.COLLECTION_NAME.find().limit(NUMBER) 

Example 

Consider the collection myycol has the following data. 

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"} 

Following example will display only two documents while querying the document. 

>db.mycol.find({},{"title":1,_id:0}).limit(2) 

{"title":"MongoDB Overview"} 

{"title":"NoSQL Overview"} 

> 

If you don't specify the number argument in limit() method then it will display all 
documents from the collection. 

MongoDB Skip() Method 

Apart from limit() method, there is one more method skip() which also accepts number 
type argument and is used to skip the number of documents. 

Syntax 

The basic syntax of skip() method is as follows: 

>db.COLLECTION_NAME.find().limit(NUMBER).skip(NUMBER) 

 

 

15.  MongoDB ─ Limit Records 



MongoDB 

 

30 

 

Example 

Following example will display only the second document. 

>db.mycol.find({},{"title":1,_id:0}).limit(1).skip(1) 

{"title":"NoSQL Overview"} 

> 

Please note, the default value in skip() method is 0. 

 



 

 

 

MODUL 5 

DATABASE OBJEK TER-DISTRIBUSI 

  



MongoDB 

 

31 

 

In this chapter, we will learn how to sort records in MongoDB. 

The sort() Method 

To sort documents in MongoDB, you need to use sort() method. The method accepts a 

document containing a list of fields along with their sorting order. To specify sorting order 
1 and -1 are used. 1 is used for ascending order while -1 is used for descending order. 

Syntax 

The basic syntax of sort() method is as follows: 

>db.COLLECTION_NAME.find().sort({KEY:1}) 

Example 

Consider the collection myycol has the following data. 

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"} 

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"} 

Following example will display the documents sorted by title in the descending order. 

>db.mycol.find({},{"title":1,_id:0}).sort({"title":-1}) 

{"title":"Tutorials Point Overview"} 

{"title":"NoSQL Overview"} 

{"title":"MongoDB Overview"} 

> 

Please note, if you don't specify the sorting preference, then sort() method will display 
the documents in ascending order. 

 

16.  MongoDB ─ Sort Records 



MongoDB 

 

32 

 

Indexes support the efficient resolution of queries. Without indexes, MongoDB must scan 

every document of a collection to select those documents that match the query statement. 

This scan is highly inefficient and require MongoDB to process a large volume of data. 

Indexes are special data structures, that store a small portion of the data set in an easy-

to-traverse form. The index stores the value of a specific field or set of fields, ordered by 
the value of the field as specified in the index. 

The ensureIndex() Method 

To create an index you need to use ensureIndex() method of MongoDB. 

Syntax 

The basic syntax of ensureIndex() method is as follows(). 

>db.COLLECTION_NAME.ensureIndex({KEY:1}) 

Here key is the name of the file on which you want to create index and 1 is for ascending 

order. To create index in descending order you need to use -1. 

Example 

>db.mycol.ensureIndex({"title":1}) 

> 

In ensureIndex() method you can pass multiple fields, to create index on multiple fields. 

>db.mycol.ensureIndex({"title":1,"description":-1}) 

> 

ensureIndex() method also accepts list of options (which are optional). Following is the 
list: 

Parameter Type Description 

background Boolean 

Builds the index in the background so that 

building an index does not block other database 

activities. Specify true to build in the 

background. The default value is false. 

unique Boolean 

Creates a unique index so that the collection will 

not accept insertion of documents where the 

index key or keys match an existing value in the 

index. Specify true to create a unique index. 

The default value is false. 

17.  MongoDB ─ Indexing 



MongoDB 

 

33 

 

name String 

The name of the index. If unspecified, MongoDB 

generates an index name by concatenating the 

names of the indexed fields and the sort order. 

dropDups Boolean 

Creates a unique index on a field that may have 

duplicates. MongoDB indexes only the first 

occurrence of a key and removes all documents 

from the collection that contain subsequent 

occurrences of that key. Specify true to create 

unique index. The default value is false. 

sparse Boolean 

If true, the index only references documents 

with the specified field. These indexes use less 

space but behave differently in some situations 

(particularly sorts). The default value is false. 

expireAfterSeconds Integer 

Specifies a value, in seconds, as a TTL to control 

how long MongoDB retains documents in this 

collection. 

v Index Version 

The index version number. The default index 

version depends on the version of MongoDB 

running when creating the index. 

weights Document 

The weight is a number ranging from 1 to 

99,999 and denotes the significance of the field 

relative to the other indexed fields in terms of 

the score. 

default_language String 

For a text index, the language that determines 

the list of stop words and the rules for the 

stemmer and tokenizer. The default value is 

english. 

language_override String 

For a text index, specify the name of the field 

in the document that contains, the language to 

override the default language. The default value 

is language. 

 

 



MongoDB 

 

34 

 

Aggregations operations process data records and return computed results. Aggregation 

operations group values from multiple documents together, and can perform a variety of 

operations on the grouped data to return a single result. In SQL count(*) and with group 
by is an equivalent of mongodb aggregation. 

The aggregate() Method 

For the aggregation in MongoDB, you should use aggregate() method. 

Syntax 

Basic syntax of aggregate() method is as follows: 

>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION) 

Example 

In the collection you have the following data: 

{ 

   _id: ObjectId(7df78ad8902c) 

   title: 'MongoDB Overview',  

   description: 'MongoDB is no sql database', 

   by_user: 'tutorials point', 

   url: 'http://www.tutorialspoint.com', 

   tags: ['mongodb', 'database', 'NoSQL'], 

   likes: 100 

}, 

{ 

   _id: ObjectId(7df78ad8902d) 

   title: 'NoSQL Overview',  

   description: 'No sql database is very fast', 

   by_user: 'tutorials point', 

   url: 'http://www.tutorialspoint.com', 

   tags: ['mongodb', 'database', 'NoSQL'], 

   likes: 10 

}, 

{ 

   _id: ObjectId(7df78ad8902e) 

18.  MongoDB ─ Aggregation 



MongoDB 

 

35 

 

   title: 'Neo4j Overview',  

   description: 'Neo4j is no sql database', 

   by_user: 'Neo4j', 

   url: 'http://www.neo4j.com', 

   tags: ['neo4j', 'database', 'NoSQL'], 

   likes: 750 

}, 

Now from the above collection, if you want to display a list stating how many tutorials are 

written by each user, then you will use the following aggregate() method: 

> db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 
1}}}]) 

{ 

   "result" : [ 

      { 

         "_id" : "tutorials point", 

         "num_tutorial" : 2 

      }, 

      { 

         "_id" : "Neo4j", 

         "num_tutorial" : 1 

      } 

   ], 

   "ok" : 1 

} 

> 

Sql equivalent query for the above use case will be select by_user, count(*) from 
mycol group by by_user. 

In the above example, we have grouped documents by field by_user and on each 

occurrence of by_user previous value of sum is incremented. Following is a list of available 
aggregation expressions. 

Expression Description Example 

$sum 
Sums up the defined value from all 

documents in the collection. 

db.mycol.aggregate([{$group 

: {_id : "$by_user", 

num_tutorial : {$sum : 

"$likes"}}}]) 



MongoDB 

 

36 

 

$avg 
Calculates the average of all given values 

from all documents in the collection. 

db.mycol.aggregate([{$group 

: {_id : "$by_user", 

num_tutorial : {$avg : 

"$likes"}}}]) 

$min 

Gets the minimum of the corresponding 

values from all documents in the 

collection. 

db.mycol.aggregate([{$group 

: {_id : "$by_user", 

num_tutorial : {$min : 

"$likes"}}}]) 

$max 

Gets the maximum of the corresponding 

values from all documents in the 

collection. 

db.mycol.aggregate([{$group 

: {_id : "$by_user", 

num_tutorial : {$max : 

"$likes"}}}]) 

$push 
Inserts the value to an array in the 

resulting document. 

db.mycol.aggregate([{$group 

: {_id : "$by_user", url : 

{$push: "$url"}}}]) 

$addToSet 

Inserts the value to an array in the 

resulting document but does not create 

duplicates. 

db.mycol.aggregate([{$group 

: {_id : "$by_user", url : 

{$addToSet : "$url"}}}]) 

$first 

Gets the first document from the source 

documents according to the grouping. 

Typically this makes only sense together 

with some previously applied “$sort”-

stage. 

db.mycol.aggregate([{$group 

: {_id : "$by_user", first_url 

: {$first : "$url"}}}]) 

$last 

Gets the last document from the source 

documents according to the grouping. 

Typically this makes only sense together 

with some previously applied “$sort”-

stage. 

db.mycol.aggregate([{$group 

: {_id : "$by_user", last_url : 

{$last : "$url"}}}]) 

Pipeline Concept 

In UNIX command, shell pipeline means the possibility to execute an operation on some 

input and use the output as the input for the next command and so on. MongoDB also 

supports same concept in aggregation framework. There is a set of possible stages and 

each of those is taken as a set of documents as an input and produces a resulting set of 

documents (or the final resulting JSON document at the end of the pipeline). This can then 
in turn be used for the next stage and so on. 

Following are the possible stages in aggregation framework: 

 $project: Used to select some specific fields from a collection. 

 

 $match: This is a filtering operation and thus this can reduce the amount of 

documents that are given as input to the next stage. 

 



MongoDB 

 

37 

 

 $group: This does the actual aggregation as discussed above. 

 

 $sort: Sorts the documents. 

 

 $skip: With this, it is possible to skip forward in the list of documents for a given 

amount of documents. 

 

 $limit: This limits the amount of documents to look at, by the given number 

starting from the current positions. 

 

 $unwind: This is used to unwind document that are using arrays. When using an 

array, the data is kind of pre-joined and this operation will be undone with this to 

have individual documents again. Thus with this stage we will increase the amount 
of documents for the next stage. 

 



 

 

 

MODUL 6 

DATABASE OBJEK TER-DISTRIBUSI 

  



MongoDB 

 

38 

 

Replication is the process of synchronizing data across multiple servers. Replication 

provides redundancy and increases data availability with multiple copies of data on 

different database servers. Replication protects a database from the loss of a single server. 

Replication also allows you to recover from hardware failure and service interruptions. 

With additional copies of the data, you can dedicate one to disaster recovery, reporting, 
or backup. 

Why Replication? 

 To keep your data safe 

 High (24*7) availability of data 

 Disaster recovery 

 No downtime for maintenance (like backups, index rebuilds, compaction) 

 Read scaling (extra copies to read from) 

 Replica set is transparent to the application 

How Replication Works in MongoDB 

MongoDB achieves replication by the use of replica set. A replica set is a group 

of mongod instances that host the same data set. In a replica, one node is primary node 

that receives all write operations. All other instances, such as secondaries, apply 

operations from the primary so that they have the same data set. Replica set can have 
only one primary node. 

 Replica set is a group of two or more nodes (generally minimum 3 nodes are 

required). 

 

 In a replica set, one node is primary node and remaining nodes are secondary. 

 

 All data replicates from primary to secondary node. 

 

 At the time of automatic failover or maintenance, election establishes for primary 

and a new primary node is elected. 

 

 After the recovery of failed node, it again joins the replica set and works as a 
secondary node. 

A typical diagram of MongoDB replication is shown in which client application always 

interact with the primary node and the primary node then replicates the data to the 

secondary nodes. 

19.  MongoDB ─ Replication 



MongoDB 

 

39 

 

 

Replica Set Features 

 A cluster of N nodes 

 Any one node can be primary 

 All write operations go to primary 

 Automatic failover 

 Automatic recovery 

 Consensus election of primary 

Set Up a Replica Set 

In this tutorial, we will convert standalone MongoDB instance to a replica set. To convert 
to replica set, following are the steps: 

 Shutdown already running MongoDB server. 

 

 Start the MongoDB server by specifying -- replSet option. Following is the basic 

syntax of --replSet: 

mongod --port "PORT" --dbpath "YOUR_DB_DATA_PATH" --replSet 
"REPLICA_SET_INSTANCE_NAME" 

 



MongoDB 

 

40 

 

Example 

mongod --port 27017 --dbpath "D:\set up\mongodb\data" --replSet rs0 

 It will start a mongod instance with the name rs0, on port 27017.  

 

 Now start the command prompt and connect to this mongod instance. 

 

 In Mongo client, issue the command rs.initiate() to initiate a new replica set. 

 

 To check the replica set configuration, issue the command rs.conf(). To check the 
status of replica set issue the command rs.status(). 

Add Members to Replica Set 

To add members to replica set, start mongod instances on multiple machines. Now start 
a mongo client and issue a command rs.add(). 

Syntax 

The basic syntax of rs.add() command is as follows: 

>rs.add(HOST_NAME:PORT) 

Example 

Suppose your mongod instance name is mongod1.net and it is running on port 27017. 
To add this instance to replica set, issue the command rs.add() in Mongo client. 

>rs.add("mongod1.net:27017") 

> 

You can add mongod instance to replica set only when you are connected to primary node. 

To check whether you are connected to primary or not, issue the 
command db.isMaster() in Mongo client. 

 



MongoDB 

 

41 

 

Sharding is the process of storing data records across multiple machines and it is 

MongoDB's approach to meeting the demands of data growth. As the size of the data 

increases, a single machine may not be sufficient to store the data nor provide an 

acceptable read and write throughput. Sharding solves the problem with horizontal scaling. 

With sharding, you add more machines to support data growth and the demands of read 
and write operations. 

Why Sharding? 

 In replication, all writes go to master node 

 Latency sensitive queries still go to master 

 Single replica set has limitation of 12 nodes 

 Memory can't be large enough when active dataset is big 

 Local disk is not big enough 

 Vertical scaling is too expensive 

Sharding in MongoDB 
The following diagram shows the sharding in MongoDB using sharded cluster. 

 

 

20.  MongoDB ─ Sharding 



MongoDB 

 

42 

 

In the following diagram, there are three main components: 

 Shards: Shards are used to store data. They provide high availability and data 

consistency. In production environment, each shard is a separate replica set. 

 

 Config Servers: Config servers store the cluster's metadata. This data contains a 

mapping of the cluster's data set to the shards. The query router uses this metadata 

to target operations to specific shards. In production environment, sharded clusters 

have exactly 3 config servers. 

 

 Query Routers: Query routers are basically mongo instances, interface with client 

applications and direct operations to the appropriate shard. The query router 

processes and targets the operations to shards and then returns results to the 

clients. A sharded cluster can contain more than one query router to divide the 

client request load. A client sends requests to one query router. Generally, a 

sharded cluster have many query routers. 
 



MongoDB 

 

43 

 

In this chapter, we will see how to create a backup in MongoDB. 

Dump MongoDB Data 

To create backup of database in MongoDB, you should use mongodumpcommand. This 

command will dump the entire data of your server into the dump directory. There are 

many options available by which you can limit the amount of data or create backup of your 
remote server. 

Syntax 

The basic syntax of mongodump command is as follows: 

>mongodump 

Example 

Start your mongod server. Assuming that your mongod server is running on the localhost 

and port 27017, open a command prompt and go to the bin directory of your mongodb 
instance and type the command mongodump 

Consider the mycol collection has the following data. 

>mongodump 

The command will connect to the server running at 127.0.0.1 and port 27017 and back 
all data of the server to directory /bin/dump/. Following is the output of the command: 

 

 

 

 

21.  MongoDB ─ Create Backup 



MongoDB 

 

44 

 

Following is a list of available options that can be used with the mongodump command. 

This command will backup only specified database at specified path. 

Syntax Description Example 

mongodump --host 

HOST_NAME --port 

PORT_NUMBER 

This command will backup all 

databases of specified mongod 

instance 

mongodump --host 

tutorialspoint.com --

port 27017 

mongodump --dbpath 

DB_PATH --out 

BACKUP_DIRECTORY 

 

mongodump --dbpath 

/data/db/ --out 

/data/backup/ 

mongodump --collection 

COLLECTION --db DB_NAME 

This command will backup only 

specified collection of specified 

database. 

mongodump --

collection mycol --db 

test 

Restore Data 

To restore backup data MongoDB's mongorestore command is used. This command 

restores all of the data from the backup directory. 

Syntax 

The basic syntax of mongorestore command is: 

>mongorestore 

Following is the output of the command: 

 



 

 

 

MODUL 7 

DATABASE OBJEK TER-DISTRIBUSI 

  



MongoDB 

 

45 

 

When you are preparing a MongoDB deployment, you should try to understand how your 

application is going to hold up in production. It’s a good idea to develop a consistent, 

repeatable approach to managing your deployment environment so that you can minimize 
any surprises once you’re in production. 

The best approach incorporates prototyping your setup, conducting load testing, 

monitoring key metrics, and using that information to scale your setup. The key part of 

the approach is to proactively monitor your entire system - this will help you understand 

how your production system will hold up before deploying, and determine where you will 

need to add capacity. Having insight into potential spikes in your memory usage, for 
example, could help put out a write-lock fire before it starts. 

To monitor your deployment, MongoDB provides some of the following commands: 

mongostat 

This command checks the status of all running mongod instances and return counters of 

database operations. These counters include inserts, queries, updates, deletes, and 

cursors. Command also shows when you’re hitting page faults, and showcase your lock 

percentage. This means that you're running low on memory, hitting write capacity or have 
some performance issue. 

To run the command, start your mongod instance. In another command prompt, go 

to bin directory of your mongodb installation and type mongostat. 

D:\set up\mongodb\bin>mongostat 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22.  MongoDB ─ Deployment 



MongoDB 

 

46 

 

Following is the output of the command: 

 

mongotop 

This command tracks and reports the read and write activity of MongoDB instance on a 

collection basis. By default, mongotop returns information in each second, which you can 

change it accordingly. You should check that this read and write activity matches your 

application intention, and you’re not firing too many writes to the database at a time, 

reading too frequently from a disk, or are exceeding your working set size. 

To run the command, start your mongod instance. In another command prompt, go 

to bin directory of your mongodb installation and type mongotop. 

D:\set up\mongodb\bin>mongotop 

 

 

 

 



MongoDB 

 

47 

 

Following is the output of the command: 

 

To change mongotop command to return information less frequently, specify a specific 
number after the mongotop command. 

D:\set up\mongodb\bin>mongotop 30 

The above example will return values every 30 seconds. 

Apart from the MongoDB tools, 10gen provides a free, hosted monitoring service, 

MongoDB Management Service (MMS), that provides a dashboard and gives you a view of 
the metrics from your entire cluster. 

 



MongoDB 

 

48 

 

In this chapter, we will learn how to set up MongoDB JDBC driver. 

Installation 

Before you start using MongoDB in your Java programs, you need to make sure that you 

have MongoDB JDBC driver and Java set up on the machine. You can check Java tutorial 

for Java installation on your machine. Now, let us check how to set up MongoDB JDBC 
driver. 

 You need to download the jar from the path Download mongo.jar. Make sure to 

download the latest release of it. 

 
 You need to include the mongo.jar into your classpath. 

Connect to Database 

To connect database, you need to specify the database name, if the database doesn't exist 
then MongoDB creates it automatically. 

Following is the code snippet to connect to the database:  

import com.mongodb.client.MongoDatabase; 

import com.mongodb.MongoClient; 

import com.mongodb.MongoCredential; 

 

public class ConnectToDB { 

   public static void main( String args[] ) {  

      // Creating a Mongo client 

      MongoClient mongo = new MongoClient( "localhost" , 27017 ); 

     

      // Creating Credentials 

      MongoCredential credential; 

      credential = MongoCredential.createCredential("sampleUser", "myDb", 
"password".toCharArray()); 

      System.out.println("Connected to the database successfully"); 

 

      // Accessing the database 

      MongoDatabase database = mongo.getDatabase("myDb"); 

      System.out.println("Credentials ::"+ credential);     

   } 

} 

23.  MongoDB ─ Java 

https://github.com/mongodb/mongo-java-driver/downloads


MongoDB 

 

49 

 

Now, let's compile and run the above program to create our database myDb as shown 
below. 

$javac ConnectToDB.java 

$java ConnectToDB 

On executing, the above program gives you the following output. 

Connected to the database successfully 

Credentials ::MongoCredential{mechanism=null, userName='sampleUser', 
source='myDb', password=<hidden>, mechanismProperties={}} 

Create a Collection 

To create a collection, createCollection() method of com.mongodb.client.MongoDatabase 
class is used. 

Following is the code snippet to create a collection − 

import com.mongodb.client.MongoDatabase; 

import com.mongodb.MongoClient; 

import com.mongodb.MongoCredential; 

 

public class CreatingCollection { 

   public static void main( String args[] ) {  

      // Creating a Mongo client 

      MongoClient mongo = new MongoClient( "localhost" , 27017 ); 

     

      // Creating Credentials 

      MongoCredential credential; 

      credential = MongoCredential.createCredential("sampleUser", "myDb", 
"password".toCharArray()); 

       System.out.println("Connected to the database successfully"); 

 

      //Accessing the database 

      MongoDatabase database = mongo.getDatabase("myDb"); 

 

      //Creating a collection 

      database.createCollection("sampleCollection"); 

      System.out.println("Collection created successfully"); 

   } 

} 



MongoDB 

 

50 

 

On compiling, the above program gives you the following result − 

Connected to the database successfully 

Collection created successfully 

Getting/Selecting a Collection 

To get/select a collection from the database, getCollection() method of 

com.mongodb.client.MongoDatabase class is used. 

Following is the program to get/select a collection − 

import com.mongodb.client.MongoCollection; 

import com.mongodb.client.MongoDatabase; 

import org.bson.Document; 

import com.mongodb.MongoClient; 

import com.mongodb.MongoCredential; 

 

public class selectingCollection { 

   public static void main( String args[] ) {  

      // Creating a Mongo client 

      MongoClient mongo = new MongoClient( "localhost" , 27017 ); 

     

      // Creating Credentials 

      MongoCredential credential; 

      credential = MongoCredential.createCredential("sampleUser", "myDb", 
"password".toCharArray()); 

      System.out.println("Connected to the database successfully"); 

 

      // Accessing the database 

      MongoDatabase database = mongo.getDatabase("myDb"); 

 

      // Creating a collection 

      System.out.println("Collection created successfully"); 

       

      // Retieving a collection 

      MongoCollection<Document> collection = database.getCollection("myCollection"); 

      System.out.println("Collection myCollection selected successfully"); 

   } 
} 



MongoDB 

 

51 

 

On compiling, the above program gives you the following result − 

Connected to the database successfully 

Collection created successfully 

Collection myCollection selected successfully 

Insert a Document 

To insert a document into MongoDB, insert() method of com.mongodb.client.MongoCollection 
class is used. 

Following is the code snippet to insert a document − 

import com.mongodb.client.MongoCollection; 

import com.mongodb.client.MongoDatabase; 

import org.bson.Document; 

 

import com.mongodb.MongoClient; 

import com.mongodb.MongoCredential; 

 

public class InsertingDocument { 

   public static void main( String args[] ) {  

      // Creating a Mongo client 

      MongoClient mongo = new MongoClient( "localhost" , 27017 ); 

     

      // Creating Credentials 

      MongoCredential credential; 

      credential = MongoCredential.createCredential("sampleUser", "myDb", 
"password".toCharArray()); 

      System.out.println("Connected to the database successfully"); 

 

      // Accessing the database 

      MongoDatabase database = mongo.getDatabase("myDb"); 

       

      // Retrieving a collection 

      MongoCollection<Document> collection = database.getCollection("sampleCollection"); 

      System.out.println("Collection sampleCollection selected successfully"); 

       

      Document document = new Document("title", "MongoDB") 

         .append("id", 1) 



MongoDB 

 

52 

 

         .append("description", "database") 

         .append("likes", 100) 

         .append("url", "http://www.tutorialspoint.com/mongodb/") 

         .append("by", "tutorials point"); 

 

      collection.insertOne(document); 

      System.out.println("Document inserted successfully");     

   } 

} 

On compiling, the above program gives you the following result − 

Connected to the database successfully 

Collection sampleCollection selected successfully 

Document inserted successfully 

Retrieve All Documents 

To select all documents from the collection, find() method of 

com.mongodb.client.MongoCollection class is used. This method returns a cursor, so 
you need to iterate this cursor.  

Following is the program to select all documents − 

import com.mongodb.client.FindIterable; 

import com.mongodb.client.MongoCollection; 

import com.mongodb.client.MongoDatabase; 

 

import java.util.Iterator; 

import org.bson.Document; 

import com.mongodb.MongoClient; 

import com.mongodb.MongoCredential; 

 

public class RetrievingAllDocuments { 

   public static void main( String args[] ) {  

      // Creating a Mongo client 

      MongoClient mongo = new MongoClient( "localhost" , 27017 ); 

     

      // Creating Credentials 

      MongoCredential credential; 



MongoDB 

 

53 

 

      credential = MongoCredential.createCredential("sampleUser", "myDb", 
"password".toCharArray()); 

      System.out.println("Connected to the database successfully"); 

 

      // Accessing the database 

      MongoDatabase database = mongo.getDatabase("myDb"); 

 

      // Retrieving a collection 

      MongoCollection<Document> collection = 
database.getCollection("sampleCollection"); 

      System.out.println("Collection sampleCollection selected successfully"); 

       

      // Getting the iterable object 

      FindIterable<Document> iterDoc = collection.find(); 

      int i = 1; 

       

      // Getting the iterator 

      Iterator it = iterDoc.iterator(); 

    

      while (it.hasNext()) {  

         System.out.println(it.next());  

         i++; 

      }       

   } 

} 

On compiling, the above program gives you the following result – 

Document{{_id=5967745223993a32646baab8, title=MongoDB, id=1, 
description=database, likes=100, url=http://www.tutorialspoint.com/mongodb/, 
by=tutorials point}} 

 

Document{{_id=7452239959673a32646baab8, title=RethinkDB, id=2, 
description=database, likes=200, url=http://www.tutorialspoint.com/rethinkdb/, 
by=tutorials point}} 

 

 

 



MongoDB 

 

54 

 

Update Document 

To update a document from the collection, updateOne() method of 
com.mongodb.client.MongoCollection class is used. 

Following is the program to select the first document – 

import com.mongodb.client.FindIterable; 

import com.mongodb.client.MongoCollection; 

import com.mongodb.client.MongoDatabase; 

import com.mongodb.client.model.Filters; 

import com.mongodb.client.model.Updates; 

import java.util.Iterator; 

import org.bson.Document; 

 

import com.mongodb.MongoClient; 

import com.mongodb.MongoCredential; 

 

public class UpdatingDocuments { 

   public static void main( String args[] ) {  

      // Creating a Mongo client 

      MongoClient mongo = new MongoClient( "localhost" , 27017 ); 

     

      // Creating Credentials 

      MongoCredential credential; 

      credential = MongoCredential.createCredential("sampleUser", "myDb", 
"password".toCharArray()); 

      System.out.println("Connected to the database successfully"); 

 

      // Accessing the database 

      MongoDatabase database = mongo.getDatabase("myDb"); 

       

      // Retrieving a collection 

      MongoCollection<Document> collection = database.getCollection("sampleCollection"); 

      System.out.println("Collection myCollection selected successfully"); 

       

      collection.updateOne(Filters.eq("id", 1), Updates.set("likes", 150));       

      System.out.println("Document update successfully..."); 

 

      // Retrieving the documents after updation 

      // Getting the iterable object 



MongoDB 

 

55 

 

      FindIterable<Document> iterDoc = collection.find(); 

      int i = 1; 

       

      // Getting the iterator 

      Iterator it = iterDoc.iterator(); 

    

      while (it.hasNext()) {  

         System.out.println(it.next());  

         i++; 

      }     

   }  

}   

On compiling, the above program gives you the following result − 

Document update successfully... 

Document{{_id=5967745223993a32646baab8, title=MongoDB, id=1, 
description=database, likes=150, url=http://www.tutorialspoint.com/mongodb/, 
by=tutorials point}} 

Delete a Document 

To delete a document from the collection, you need to use the deleteOne() method of 
the com.mongodb.client.MongoCollection class. 

Following is the program to delete a document – 

import com.mongodb.client.FindIterable; 

import com.mongodb.client.MongoCollection; 

import com.mongodb.client.MongoDatabase; 

import com.mongodb.client.model.Filters; 

 

import java.util.Iterator; 

import org.bson.Document; 

import com.mongodb.MongoClient; 

import com.mongodb.MongoCredential; 

 

public class DeletingDocuments { 

   public static void main( String args[] ) {  

      // Creating a Mongo client 

      MongoClient mongo = new MongoClient( "localhost" , 27017 ); 



MongoDB 

 

56 

 

      // Creating Credentials 

      MongoCredential credential; 

      credential = MongoCredential.createCredential("sampleUser", "myDb", 
"password".toCharArray()); 

      System.out.println("Connected to the database successfully"); 

 

      // Accessing the database 

      MongoDatabase database = mongo.getDatabase("myDb"); 

       

      // Retrieving a collection 

      MongoCollection<Document> collection = database.getCollection("sampleCollection"); 

      System.out.println("Collection sampleCollection selected successfully"); 

       

      // Deleting the documents 

      collection.deleteOne(Filters.eq("id", 1)); 

      System.out.println("Document deleted successfully..."); 

 

      // Retrieving the documents after updation 

      // Getting the iterable object 

      FindIterable<Document> iterDoc = collection.find(); 

      int i = 1; 

       

      // Getting the iterator 

      Iterator it = iterDoc.iterator(); 

    

      while (it.hasNext()) {  

         System.out.println("Inserted Document: "+i);  

         System.out.println(it.next());  

         i++; 

      }       

   } 

} 

On compiling, the above program gives you the following result − 

Connected to the database successfully 

Collection sampleCollection selected successfully 

Document deleted successfully... 



MongoDB 

 

57 

 

Dropping a Collection 

To drop a collection from a database, you need to use the drop() method of the 
com.mongodb.client.MongoCollection class. 

Following is the program to delete a collection – 

import com.mongodb.client.MongoCollection; 

import com.mongodb.client.MongoDatabase; 

 

import org.bson.Document; 

 

import com.mongodb.MongoClient; 

import com.mongodb.MongoCredential; 

 

public class DropingCollection { 

   public static void main( String args[] ) {  

      // Creating a Mongo client 

      MongoClient mongo = new MongoClient( "localhost" , 27017 ); 

     

      // Creating Credentials 

      MongoCredential credential; 

      credential = MongoCredential.createCredential("sampleUser", "myDb", 
"password".toCharArray()); 

    

      System.out.println("Connected to the database successfully"); 

 

      // Accessing the database 

      MongoDatabase database = mongo.getDatabase("myDb"); 

 

      // Creating a collection 

      System.out.println("Collections created successfully"); 

       

      // Retieving a collection 

      MongoCollection<Document> collection = database.getCollection("sampleCollection"); 

       

      // Dropping a Collection 

      collection.drop(); 

      System.out.println("Collection dropped successfully");       



MongoDB 

 

58 

 

   } 

}    

On compiling, the above program gives you the following result – 

Connected to the database successfully 

Collection sampleCollection selected successfully 

Collection dropped successfully 

Listing All the Collections 

To list all the collections in a database, you need to use the 

listCollectionNames()  method of the com.mongodb.client.MongoDatabase class. 

Following is the program to list all the collections of a database – 

import com.mongodb.client.MongoDatabase; 

import com.mongodb.MongoClient; 

import com.mongodb.MongoCredential; 

 

public class ListOfCollection { 

   public static void main( String args[] ) {  

      // Creating a Mongo client 

      MongoClient mongo = new MongoClient( "localhost" , 27017 ); 

     

      // Creating Credentials 

      MongoCredential credential; 

      credential = MongoCredential.createCredential("sampleUser", "myDb", 
"password".toCharArray()); 

    

      System.out.println("Connected to the database successfully"); 

 

      // Accessing the database 

      MongoDatabase database = mongo.getDatabase("myDb"); 

      System.out.println("Collection created successfully"); 

      for (String name : database.listCollectionNames()) { 

         System.out.println(name); 

     } 

   } 
} 



MongoDB 

 

59 

 

On compiling, the above program gives you the following result – 

Connected to the database successfully 

Collection created successfully 

myCollection 

myCollection1 

myCollection5 

Remaining MongoDB methods save(), limit(), skip(), sort() etc. work same as 
explained in the subsequent tutorial. 



 

 

DAFTAR PUSTAKA 

 

 

MongoDB Tutorial https://www.tutorialspoint.com/mongodb/ di-akses tanggal 31 Agustus 

2017 di Jakarta 

 

 

P M. Tamer Özsu  and Patrick Valduriez, (2011), Principles of Distributed Database Systems, 

Third Edition, Springer Publishing ISBN 978-1-4419-8833-1 

 

 

Ajay D. Kshemkalyani and Mukesh Singhal, (2008), Distributed Computing - Principles, 

Algorithms, and Systems, Cambridge University Press, ISBN-13 978-0-511-39341-9 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.tutorialspoint.com/mongodb/

