

MODUL PRAKTIKUM

DATABASE OBJEK TERDISTRIBUSI (DOT)

OLEH

IR. NIZIRWAN ANWAR, MT

TRI ISMARDIKO WIDYAWAN, S.KOM, M.KOM

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS ILMU KOMPUTER
UNIVERSITAS ESA UNGGUL

2017

DAFTAR ISI

MODUL PRAKTIKUM

Modul 9 PHP

Modul 10 Relationship, Database Reference, and Covered Queries

Modul 11 Analysing Queries and Atomic Operations, Advanced Indexing, Indexing

Limitations and ObjectID

Modul 12 MapReduce, TextSearch, and Regular Expression

Modul 13 Rock Mongo, GridFS and Capped Collections

Modul 14 Auto Increment Sequece

MODUL 9

DATABASE OBJEK TER-DISTRIBUSI

MongoDB

60

To use MongoDB with PHP, you need to use MongoDB PHP driver. Download the driver

from the url Download PHP Driver. Make sure to download the latest release of it. Now

unzip the archive and put php_mongo.dll in your PHP extension directory ("ext" by default)
and add the following line to your php.ini file −

extension = php_mongo.dll

Make a Connection and Select a Database

To make a connection, you need to specify the database name, if the database doesn't
exist then MongoDB creates it automatically.

Following is the code snippet to connect to the database −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

?>

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Create a Collection

Following is the code snippet to create a collection −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

24. MongoDB ─ PHP

https://s3.amazonaws.com/drivers.mongodb.org/php/index.html

MongoDB

61

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->createCollection("mycol");

 echo "Collection created successfully";

?>

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection created successfully

Insert a Document

To insert a document into MongoDB, insert() method is used.

Following is the code snippet to insert a document −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->mycol;

 echo "Collection selected successfully";

 $document = array(

 "title" => "MongoDB",

 "description" => "database",

 "likes" => 100,

 "url" => "http://www.tutorialspoint.com/mongodb/",

 "by", "tutorials point"

);

 $collection->insert($document);

 echo "Document inserted successfully";

?>

MongoDB

62

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection selected successfully

Document inserted successfully

Find All Documents

To select all documents from the collection, find() method is used.

Following is the code snippet to select all documents −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->mycol;

 echo "Collection selected successfully";

 $cursor = $collection->find();

 // iterate cursor to display title of documents

 foreach ($cursor as $document) {

 echo $document["title"] . "\n";

 }

?>

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection selected successfully

{

 "title": "MongoDB"

}

MongoDB

63

Update a Document

To update a document, you need to use the update() method.

In the following example, we will update the title of inserted document to MongoDB
Tutorial. Following is the code snippet to update a document −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->mycol;

 echo "Collection selected succsessfully";

 // now update the document

 $collection->update(array("title"=>"MongoDB"),

 array('$set'=>array("title"=>"MongoDB Tutorial")));

 echo "Document updated successfully";

 // now display the updated document

 $cursor = $collection->find();

 // iterate cursor to display title of documents

 echo "Updated document";

 foreach ($cursor as $document) {

 echo $document["title"] . "\n";

 }

?>

MongoDB

64

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection selected succsessfully

Document updated successfully

Updated document

{

 "title": "MongoDB Tutorial"

}

Delete a Document

To delete a document, you need to use remove() method.

In the following example, we will remove the documents that has the title MongoDB
Tutorial. Following is the code snippet to delete a document −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->mycol;

 echo "Collection selected succsessfully";

 // now remove the document

 $collection->remove(array("title"=>"MongoDB Tutorial"),false);

 echo "Documents deleted successfully";

 // now display the available documents

 $cursor = $collection->find();

 // iterate cursor to display title of documents

 echo "Updated document";

 foreach ($cursor as $document) {

 echo $document["title"] . "\n"; }

?>

MongoDB

65

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection selected succsessfully

Documents deleted successfully

In the above example, the second parameter is boolean type and used for justOne field
of remove() method.

Remaining MongoDB methods findOne(), save(), limit(), skip(), sort() etc. works
same as explained above.

MongoDB

66

Advanced MongoDB

MODUL 10

DATABASE OBJEK TER-DISTRIBUSI

MongoDB

67

Relationships in MongoDB represent how various documents are logically related to each

other. Relationships can be modeled via Embedded and Referenced approaches. Such

relationships can be either 1:1, 1:N, N:1 or N:N.

Let us consider the case of storing addresses for users. So, one user can have multiple

addresses making this a 1:N relationship.

Following is the sample document structure of user document −

{

 "_id":ObjectId("52ffc33cd85242f436000001"),

 "name": "Tom Hanks",

 "contact": "987654321",

 "dob": "01-01-1991"

}

Following is the sample document structure of address document −

{

 "_id":ObjectId("52ffc4a5d85242602e000000"),

 "building": "22 A, Indiana Apt",

 "pincode": 123456,

 "city": "Los Angeles",

 "state": "California"

}

Modeling Embedded Relationships

In the embedded approach, we will embed the address document inside the user
document.

{

 "_id":ObjectId("52ffc33cd85242f436000001"),

 "contact": "987654321",

 "dob": "01-01-1991",

 "name": "Tom Benzamin",

 "address": [

 {

 "building": "22 A, Indiana Apt",

 "pincode": 123456,

25. MongoDB ─ Relationships

MongoDB

68

 "city": "Los Angeles",

 "state": "California"

 },

 {

 "building": "170 A, Acropolis Apt",

 "pincode": 456789,

 "city": "Chicago",

 "state": "Illinois"

 }

]

}

This approach maintains all the related data in a single document, which makes it easy to
retrieve and maintain. The whole document can be retrieved in a single query such as −

>db.users.findOne({"name":"Tom Benzamin"},{"address":1})

Note that in the above query, db and users are the database and collection respectively.

The drawback is that if the embedded document keeps on growing too much in size, it can
impact the read/write performance.

Modeling Referenced Relationships

This is the approach of designing normalized relationship. In this approach, both the user

and address documents will be maintained separately but the user document will contain
a field that will reference the address document's id field.

{

 "_id":ObjectId("52ffc33cd85242f436000001"),

 "contact": "987654321",

 "dob": "01-01-1991",

 "name": "Tom Benzamin",

 "address_ids": [

 ObjectId("52ffc4a5d85242602e000000"),

 ObjectId("52ffc4a5d85242602e000001")

]}

MongoDB

69

As shown above, the user document contains the array field address_ids which contains

ObjectIds of corresponding addresses. Using these ObjectIds, we can query the address

documents and get address details from there. With this approach, we will need two

queries: first to fetch the address_ids fields from user document and second to fetch
these addresses from address collection.

>var result = db.users.findOne({"name":"Tom Benzamin"},{"address_ids":1})

>var addresses = db.address.find({"_id":{"$in":result["address_ids"]}})

MongoDB

70

As seen in the last chapter of MongoDB relationships, to implement a normalized database

structure in MongoDB, we use the concept of Referenced Relationships also referred to

as Manual References in which we manually store the referenced document's id inside

other document. However, in cases where a document contains references from different
collections, we can use MongoDB DBRefs.

DBRefs vs Manual References

As an example scenario, where we would use DBRefs instead of manual references,

consider a database where we are storing different types of addresses (home, office,

mailing, etc.) in different collections (address_home, address_office, address_mailing,

etc). Now, when a user collection's document references an address, it also needs to

specify which collection to look into based on the address type. In such scenarios where a

document references documents from many collections, we should use DBRefs.

Using DBRefs

There are three fields in DBRefs:

 $ref: This field specifies the collection of the referenced document

 $id: This field specifies the _id field of the referenced document

 $db: This is an optional field and contains the name of the database in which the
referenced document lies

Consider a sample user document having DBRef field address as shown in the code

snippet:

{

 "_id":ObjectId("53402597d852426020000002"),

 "address": {

 "$ref": "address_home",

 "$id": ObjectId("534009e4d852427820000002"),

 "$db": "tutorialspoint"},

 "contact": "987654321",

 "dob": "01-01-1991",

 "name": "Tom Benzamin"

}

The address DBRef field here specifies that the referenced address document lies

in address_home collection under tutorialspoint database and has an id of
534009e4d852427820000002.

26. MongoDB ─ Database References

MongoDB

71

The following code dynamically looks in the collection specified by $refparameter

(address_home in our case) for a document with id as specified by $id parameter in

DBRef.

>var user = db.users.findOne({"name":"Tom Benzamin"})

>var dbRef = user.address

>db[dbRef.$ref].findOne({"_id":(dbRef.$id)})

The above code returns the following address document present in
address_home collection:

{

 "_id" : ObjectId("534009e4d852427820000002"),

 "building" : "22 A, Indiana Apt",

 "pincode" : 123456,

 "city" : "Los Angeles",

 "state" : "California"

}

MongoDB

72

In this chapter, we will learn about covered queries.

What is a Covered Query?

As per the official MongoDB documentation, a covered query is a query in which:

 All the fields in the query are part of an index.

 All the fields returned in the query are in the same index.

Since all the fields present in the query are part of an index, MongoDB matches the query

conditions and returns the result using the same index without actually looking inside the

documents. Since indexes are present in RAM, fetching data from indexes is much faster

as compared to fetching data by scanning documents.

Using Covered Queries

To test covered queries, consider the following document in the users collection:

{

 "_id": ObjectId("53402597d852426020000002"),

 "contact": "987654321",

 "dob": "01-01-1991",

 "gender": "M",

 "name": "Tom Benzamin",

 "user_name": "tombenzamin"

}

We will first create a compound index for the users collection on the fields gender and
user_name using the following query:

>db.users.ensureIndex({gender:1,user_name:1})

Now, this index will cover the following query:

>db.users.find({gender:"M"},{user_name:1,_id:0})

That is to say that for the above query, MongoDB would not go looking into database
documents. Instead it would fetch the required data from indexed data which is very fast.

27. MongoDB ─ Covered Queries

MongoDB

73

Since our index does not include _id field, we have explicitly excluded it from result set of

our query, as MongoDB by default returns _id field in every query. So the following query

would not have been covered inside the index created above:

>db.users.find({gender:"M"},{user_name:1})

Lastly, remember that an index cannot cover a query if:

 Any of the indexed fields is an array

 Any of the indexed fields is a subdocument

MODUL 11

DATABASE OBJEK TER-DISTRIBUSI

MongoDB

74

Analyzing queries is a very important aspect of measuring how effective the database and
indexing design is. We will learn about the frequently used $explain and $hint queries.

Using $explain

The $explain operator provides information on the query, indexes used in a query and
other statistics. It is very useful when analyzing how well your indexes are optimized.

In the last chapter, we had already created an index for the users collection on
fields gender and user_name using the following query:

>db.users.ensureIndex({gender:1,user_name:1})

We will now use $explain on the following query:

>db.users.find({gender:"M"},{user_name:1,_id:0}).explain()

The above explain() query returns the following analyzed result:

{

 "cursor" : "BtreeCursor gender_1_user_name_1",

 "isMultiKey" : false,

 "n" : 1,

 "nscannedObjects" : 0,

 "nscanned" : 1,

 "nscannedObjectsAllPlans" : 0,

 "nscannedAllPlans" : 1,

 "scanAndOrder" : false,

 "indexOnly" : true,

 "nYields" : 0,

 "nChunkSkips" : 0,

 "millis" : 0,

 "indexBounds" : {

 "gender" : [

 [

 "M",

 "M"

]

],

 "user_name" : [

28. MongoDB ─ Analyzing Queries

MongoDB

75

 [

 {

 "$minElement" : 1

 },

 {

 "$maxElement" : 1

 }

]

]

 }

}

We will now look at the fields in this result set:

 The true value of indexOnly indicates that this query has used indexing.

 The cursor field specifies the type of cursor used. BTreeCursor type indicates that

an index was used and also gives the name of the index used. BasicCursor indicates

that a full scan was made without using any indexes.

 n indicates the number of documents matching returned.

 nscannedObjects indicates the total number of documents scanned.

 nscanned indicates the total number of documents or index entries scanned.

Using $hint

The $hint operator forces the query optimizer to use the specified index to run a query.

This is particularly useful when you want to test performance of a query with different

indexes. For example, the following query specifies the index on fields gender and
user_name to be used for this query:

>db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1})

To analyze the above query using $explain:

>db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1}).e
xplain()

MongoDB

76

MongoDB does not support multi-document atomic transactions. However, it does

provide atomic operations on a single document. So if a document has hundred fields the

update statement will either update all the fields or none, hence maintaining atomicity at
the document-level.

Model Data for Atomic Operations

The recommended approach to maintain atomicity would be to keep all the related

information, which is frequently updated together in a single document using embedded

documents. This would make sure that all the updates for a single document are atomic.

Consider the following products document:

{

 "_id":1,

 "product_name": "Samsung S3",

 "category": "mobiles",

 "product_total": 5,

 "product_available": 3,

 "product_bought_by": [

 {

 "customer": "john",

 "date": "7-Jan-2014"

 },

 {

 "customer": "mark",

 "date": "8-Jan-2014"

 }

]

}

In this document, we have embedded the information of the customer who buys the

product in the product_bought_by field. Now, whenever a new customer buys the

product, we will first check if the product is still available using product_available field.

If available, we will reduce the value of product_available field as well as insert the new

customer's embedded document in the product_bought_by field. We will

use findAndModify command for this functionality because it searches and updates the
document in the same go.

29. MongoDB ─ Atomic Operations

MongoDB

77

>db.products.findAndModify({

 query:{_id:2,product_available:{$gt:0}},

 update:{

 $inc:{product_available:-1},

 $push:{product_bought_by:{customer:"rob",date:"9-Jan-2014"}}

 }

})

Our approach of embedded document and using findAndModify query makes sure that the

product purchase information is updated only if it the product is available. And the whole
of this transaction being in the same query, is atomic.

In contrast to this, consider the scenario where we may have kept the product availability

and the information on who has bought the product, separately. In this case, we will first

check if the product is available using the first query. Then in the second query we will

update the purchase information. However, it is possible that between the executions of

these two queries, some other user has purchased the product and it is no more available.

Without knowing this, our second query will update the purchase information based on the

result of our first query. This will make the database inconsistent because we have sold a
product which is not available.

MongoDB

78

Consider the following document of the users collection:

{

 "address": {

 "city": "Los Angeles",

 "state": "California",

 "pincode": "123"

 },

 "tags": [

 "music",

 "cricket",

 "blogs"

],

 "name": "Tom Benzamin"

}

The above document contains an address sub-document and a tags array.

Indexing Array Fields

Suppose we want to search user documents based on the user’s tags. For this, we will
create an index on tags array in the collection.

Creating an index on array in turn creates separate index entries for each of its fields. So

in our case when we create an index on tags array, separate indexes will be created for
its values music, cricket and blogs.

To create an index on tags array, use the following code:

>db.users.ensureIndex({"tags":1})

After creating the index, we can search on the tags field of the collection like this:

>db.users.find({tags:"cricket"})

To verify that proper indexing is used, use the following explain command:

>db.users.find({tags:"cricket"}).explain()

The above command resulted in "cursor" : "BtreeCursor tags_1" which confirms that

proper indexing is used.

30. MongoDB ─ Advanced Indexing

MongoDB

79

Indexing Sub-Document Fields

Suppose that we want to search documents based on city, state and pincode fields. Since

all these fields are part of address sub-document field, we will create an index on all the

fields of the sub-document.

For creating an index on all the three fields of the sub-document, use the following code:

>db.users.ensureIndex({"address.city":1,"address.state":1,"address.pincode":1})

Once the index is created, we can search for any of the sub-document fields utilizing this

index as follows:

>db.users.find({"address.city":"Los Angeles"})

Remember that the query expression has to follow the order of the index specified. So the

index created above would support the following queries:

>db.users.find({"address.city":"Los Angeles","address.state":"California"})

It will also support the following query:

>db.users.find({"address.city":"LosAngeles","address.state":"California","addre
ss.pincode":

MongoDB

80

In this chapter, we will learn about Indexing Limitations and its other components.

Extra Overhead

Every index occupies some space as well as causes an overhead on each insert, update

and delete. So if you rarely use your collection for read operations, it makes sense not to
use indexes.

RAM Usage

Since indexes are stored in RAM, you should make sure that the total size of the index

does not exceed the RAM limit. If the total size increases the RAM size, it will start deleting

some indexes, causing performance loss.

Query Limitations

Indexing can't be used in queries which use:

 Regular expressions or negation operators like $nin, $not, etc.

 Arithmetic operators like $mod, etc.

 $where clause

Hence, it is always advisable to check the index usage for your queries.

Index Key Limits

Starting from version 2.6, MongoDB will not create an index if the value of existing index
field exceeds the index key limit.

Inserting Documents Exceeding Index Key Limit

MongoDB will not insert any document into an indexed collection if the indexed field value

of this document exceeds the index key limit. Same is the case with mongorestore and

mongoimport utilities.

Maximum Ranges

 A collection cannot have more than 64 indexes.

 The length of the index name cannot be longer than 125 characters.

 A compound index can have maximum 31 fields indexed.

31. MongoDB ─ Indexing Limitations

MongoDB

81

We have been using MongoDB Object Id in all the previous chapters. In this chapter, we
will understand the structure of ObjectId.

An ObjectId is a 12-byte BSON type having the following structure:

 The first 4 bytes representing the seconds since the unix epoch

 The next 3 bytes are the machine identifier

 The next 2 bytes consists of process id

 The last 3 bytes are a random counter value

MongoDB uses ObjectIds as the default value of _id field of each document, which is

generated while the creation of any document. The complex combination of ObjectId
makes all the _id fields unique.

Creating New ObjectId

To generate a new ObjectId use the following code:

>newObjectId = ObjectId()

The above statement returned the following uniquely generated id:

ObjectId("5349b4ddd2781d08c09890f3")

Instead of MongoDB generating the ObjectId, you can also provide a 12-byte id:

>myObjectId = ObjectId("5349b4ddd2781d08c09890f4")

Creating Timestamp of a Document

Since the _id ObjectId by default stores the 4-byte timestamp, in most cases you do not

need to store the creation time of any document. You can fetch the creation time of a
document using getTimestamp method:

>ObjectId("5349b4ddd2781d08c09890f4").getTimestamp()

This will return the creation time of this document in ISO date format:

ISODate("2014-04-12T21:49:17Z")

Converting ObjectId to String

In some cases, you may need the value of ObjectId in a string format. To convert the
ObjectId in string, use the following code:

>newObjectId.str

32. MongoDB ─ ObjectId

MongoDB

82

The above code will return the string format of the Guid:

5349b4ddd2781d08c09890f3

MODUL 12

DATABASE OBJEK TER-DISTRIBUSI

MongoDB

83

As per the MongoDB documentation, MapReduce is a data processing paradigm for

condensing large volumes of data into useful aggregated results. MongoDB

uses mapReduce command for map-reduce operations. MapReduce is generally used for
processing large data sets.

MapReduce Command

Following is the syntax of the basic mapReduce command −

>db.collection.mapReduce(

 function() {emit(key,value);}, //map function

 function(key,values) {return reduceFunction}, { //reduce function

 out: collection,

 query: document,

 sort: document,

 limit: number

 }

)

The map-reduce function first queries the collection, then maps the result documents to
emit key-value pairs, which is then reduced based on the keys that have multiple values.

In the above syntax -

 map is a javascript function that maps a value with a key and emits a key-value pair

 reduce is a javascript function that reduces or groups all the documents having

the same key

 out specifies the location of the map-reduce query result

 query specifies the optional selection criteria for selecting documents

 sort specifies the optional sort criteria

 limit specifies the optional maximum number of documents to be returned

Using MapReduce

Consider the following document structure storing user posts. The document stores
user_name of the user and the status of post.

{

 "post_text": "tutorialspoint is an awesome website for tutorials",

 "user_name": "mark",

33. MongoDB ─ MapReduce

MongoDB

84

 "status":"active"

}

Now, we will use a mapReduce function on our posts collection to select all the active

posts, group them on the basis of user_name and then count the number of posts by each
user using the following code −

>db.posts.mapReduce(

 function() { emit(this.user_id,1); },

 function(key, values) {return Array.sum(values)}, {

 query:{status:"active"},

 out:"post_total"

 }

)

The above mapReduce query outputs the following result −

{

 "result" : "post_total",

 "timeMillis" : 9,

 "counts" : {

 "input" : 4,

 "emit" : 4,

 "reduce" : 2,

 "output" : 2

 },

 "ok" : 1,

}

The result shows that a total of 4 documents matched the query (status:"active"), the

map function emitted 4 documents with key-value pairs and finally the reduce function
grouped mapped documents having the same keys into 2.

To see the result of this mapReduce query, use the find operator −

>db.posts.mapReduce(

 function() { emit(this.user_id,1); },

 function(key, values) {return Array.sum(values)}, {

 query:{status:"active"},

 out:"post_total"

 }
).find()

MongoDB

85

The above query gives the following result which indicates that both users tom
and mark have two posts in active states −

{ "_id" : "tom", "value" : 2 }

{ "_id" : "mark", "value" : 2 }

In a similar manner, MapReduce queries can be used to construct large complex

aggregation queries. The use of custom Javascript functions make use of MapReduce which
is very flexible and powerful.

MongoDB

86

Starting from version 2.4, MongoDB started supporting text indexes to search inside string

content. The Text Search uses stemming techniques to look for specified words in the

string fields by dropping stemming stop words like a, an, the, etc. At present, MongoDB
supports around 15 languages.

Enabling Text Search

Initially, Text Search was an experimental feature but starting from version 2.6, the

configuration is enabled by default. But if you are using the previous version of MongoDB,

you have to enable text search with the following code:

>db.adminCommand({setParameter:true,textSearchEnabled:true})

Creating Text Index

Consider the following document under posts collection containing the post text and its
tags:

{

 "post_text": "enjoy the mongodb articles on tutorialspoint",

 "tags": [

 "mongodb",

 "tutorialspoint"

]

}

We will create a text index on post_text field so that we can search inside our posts' text:

>db.posts.ensureIndex({post_text:"text"})

Using Text Index

Now that we have created the text index on post_text field, we will search for all the posts
having the word tutorialspoint in their text.

>db.posts.find({$text:{$search:"tutorialspoint"}})

34. MongoDB ─ Text Search

MongoDB

87

The above command returned the following result documents having the word
tutorialspoint in their post text:

{

 "_id" : ObjectId("53493d14d852429c10000002"),

 "post_text" : "enjoy the mongodb articles on tutorialspoint",

 "tags" : ["mongodb", "tutorialspoint"]

}

{

 "_id" : ObjectId("53493d1fd852429c10000003"),

 "post_text" : "writing tutorials on mongodb",

 "tags" : ["mongodb", "tutorial"]

}

If you are using old versions of MongoDB, you have to use the following command:

>db.posts.runCommand("text",{search:" tutorialspoint "})

Using Text Search highly improves the search efficiency as compared to normal search.

Deleting Text Index

To delete an existing text index, first find the name of index using the following query:

>db.posts.getIndexes()

After getting the name of your index from above query, run the following command.

Here, post_text_text is the name of the index.

>db.posts.dropIndex("post_text_text")

MongoDB

88

Regular Expressions are frequently used in all languages to search for a pattern or word

in any string. MongoDB also provides functionality of regular expression for string pattern

matching using the $regex operator. MongoDB uses PCRE (Perl Compatible Regular
Expression) as regular expression language.

Unlike text search, we do not need to do any configuration or command to use regular expressions.

Consider the following document structure under posts collection containing the post text
and its tags:

{

 "post_text": "enjoy the mongodb articles on tutorialspoint",

 "tags": [

 "mongodb",

 "tutorialspoint"

]

}

Using regex Expression

The following regex query searches for all the posts containing string tutorialspoint in it:

>db.posts.find({post_text:{$regex:"tutorialspoint"}})

The same query can also be written as:

>db.posts.find({post_text:/tutorialspoint/})

Using regex Expression with Case Insensitive

To make the search case insensitive, we use the $options parameter with value $i. The

following command will look for strings having the word tutorialspoint, irrespective of
smaller or capital case:

>db.posts.find({post_text:{$regex:"tutorialspoint",$options:"$i"}})

One of the results returned from this query is the following document which contains the

word tutorialspoint in different cases:

{

 "_id" : ObjectId("53493d37d852429c10000004"),

 "post_text" : "hey! this is my post on TutorialsPoint",

 "tags" : ["tutorialspoint"]
}

35. MongoDB ─ Regular Expression

MongoDB

89

Using regex for Array Elements

We can also use the concept of regex on array field. This is particularly very important

when we implement the functionality of tags. So, if you want to search for all the posts

having tags beginning from the word tutorial (either tutorial or tutorials or tutorialpoint or
tutorialphp), you can use the following code:

>db.posts.find({tags:{$regex:"tutorial"}})

Optimizing Regular Expression Queries

 If the document fields are indexed, the query will use make use of indexed values

to match the regular expression. This makes the search very fast as compared to

the regular expression scanning the whole collection.

 If the regular expression is a prefix expression, all the matches are meant to

start with a certain string characters. For e.g., if the regex expression is ^tut, then

the query has to search for only those strings that begin with tut.

MODUL 13

DATABASE OBJEK TER-DISTRIBUSI

MongoDB

90

RockMongo is a MongoDB administration tool using which you can manage your server,

databases, collections, documents, indexes, and a lot more. It provides a very user-

friendly way for reading, writing, and creating documents. It is similar to PHPMyAdmin tool
for PHP and MySQL.

Downloading RockMongo

You can download the latest version of RockMongo from here:
http://rockmongo.com/downloads

Installing RockMongo

Once downloaded, you can unzip the package in your server root folder and rename the

extracted folder to rockmongo. Open any web browser and access the index.php page
from the folder rockmongo. Enter admin/admin as username/password respectively.

Working with RockMongo

We will now be looking at some basic operations that you can perform with RockMongo.

Creating New Database

To create a new database, click Databases tab. Click Create New Database. On the

next screen, provide the name of the new database and click on Create. You will see a
new database getting added in the left panel.

Creating New Collection

To create a new collection inside a database, click on that database from the left panel.

Click on the New Collection link on top. Provide the required name of the collection. Do

not worry about the other fields of Is Capped, Size and Max. Click on Create. A new
collection will be created and you will be able to see it in the left panel.

Creating New Document

To create a new document, click on the collection under which you want to add documents.

When you click on a collection, you will be able to see all the documents within that

collection listed there. To create a new document, click on the Insert link at the top. You

can enter the document's data either in JSON or array format and click on Save.

Export/Import Data

To import/export data of any collection, click on that collection and then click on

Export/Import link on the top panel. Follow the next instructions to export your data in
a zip format and then import the same zip file to import back data.

36. MongoDB ─ RockMongo

MongoDB

91

GridFS is the MongoDB specification for storing and retrieving large files such as images,

audio files, video files, etc. It is kind of a file system to store files but its data is stored

within MongoDB collections. GridFS has the capability to store files even greater than its
document size limit of 16MB.

GridFS divides a file into chunks and stores each chunk of data in a separate document,
each of maximum size 255k.

GridFS by default uses two collections fs.files and fs.chunks to store the file's metadata

and the chunks. Each chunk is identified by its unique _id ObjectId field. The fs.files severs

as a parent document. The files_id field in the fs.chunks document links the chunk to its
parent.

Following is a sample document of fs.files collection:

{

 "filename": "test.txt",

 "chunkSize": NumberInt(261120),

 "uploadDate": ISODate("2014-04-13T11:32:33.557Z"),

 "md5": "7b762939321e146569b07f72c62cca4f",

 "length": NumberInt(646)

}

The document specifies the file name, chunk size, uploaded date, and length.

Following is a sample document of fs.chunks document:

{

 "files_id": ObjectId("534a75d19f54bfec8a2fe44b"),

 "n": NumberInt(0),

 "data": "Mongo Binary Data"

}

Adding Files to GridFS

Now, we will store an mp3 file using GridFS using the put command. For this, we will use
the mongofiles.exe utility present in the bin folder of the MongoDB installation folder.

Open your command prompt, navigate to the mongofiles.exe in the bin folder of MongoDB

installation folder and type the following code:

>mongofiles.exe -d gridfs put song.mp3

Here, gridfs is the name of the database in which the file will be stored. If the database

is not present, MongoDB will automatically create a new document on the fly. Song.mp3

37. MongoDB ─ GridFS

MongoDB

92

is the name of the file uploaded. To see the file's document in database, you can use find
query:

>db.fs.files.find()

The above command returned the following document:

{

 _id: ObjectId('534a811bf8b4aa4d33fdf94d'),

 filename: "song.mp3",

 chunkSize: 261120,

 uploadDate: new Date(1397391643474), md5:
"e4f53379c909f7bed2e9d631e15c1c41",

 length: 10401959

}

We can also see all the chunks present in fs.chunks collection related to the stored file
with the following code, using the document id returned in the previous query:

>db.fs.chunks.find({files_id:ObjectId('534a811bf8b4aa4d33fdf94d')})

In my case, the query returned 40 documents meaning that the whole mp3 document was
divided in 40 chunks of data.

MongoDB

93

Capped collections are fixed-size circular collections that follow the insertion order to

support high performance for create, read, and delete operations. By circular, it means

that when the fixed size allocated to the collection is exhausted, it will start deleting the
oldest document in the collection without providing any explicit commands.

Capped collections restrict updates to the documents if the update results in increased

document size. Since capped collections store documents in the order of the disk storage,

it ensures that the document size does not increase the size allocated on the disk. Capped

collections are best for storing log information, cache data, or any other high volume data.

Creating Capped Collection

To create a capped collection, we use the normal createCollection command but
with capped option as true and specifying the maximum size of collection in bytes.

>db.createCollection("cappedLogCollection",{capped:true,size:10000})

In addition to collection size, we can also limit the number of documents in the collection
using the max parameter:

>db.createCollection("cappedLogCollection",{capped:true,size:10000,max:1000})

If you want to check whether a collection is capped or not, use the following
isCapped command:

>db.cappedLogCollection.isCapped()

If there is an existing collection which you are planning to convert to capped, you can do

it with the following code:

>db.runCommand({"convertToCapped":"posts",size:10000})

This code would convert our existing collection posts to a capped collection.

Querying Capped Collection

By default, a find query on a capped collection will display results in insertion order. But if

you want the documents to be retrieved in reverse order, use the sort command as shown
in the following code:

>db.cappedLogCollection.find().sort({$natural:-1})

38. MongoDB ─ Capped Collections

MongoDB

94

There are few other important points regarding capped collections worth knowing:

 We cannot delete documents from a capped collection.

 There are no default indexes present in a capped collection, not even on _id field.

 While inserting a new document, MongoDB does not have to actually look for a

place to accommodate new document on the disk. It can blindly insert the new

document at the tail of the collection. This makes insert operations in capped

collections very fast.

 Similarly, while reading documents MongoDB returns the documents in the same

order as present on disk. This makes the read operation very fast.

MODUL 14

DATABASE OBJEK TER-DISTRIBUSI

MongoDB

95

MongoDB does not have out-of-the-box auto-increment functionality, like SQL databases.

By default, it uses the 12-byte ObjectId for the _id field as the primary key to uniquely

identify the documents. However, there may be scenarios where we may want the _id field
to have some auto-incremented value other than the ObjectId.

Since this is not a default feature in MongoDB, we will programmatically achieve this
functionality by using a counters collection as suggested by the MongoDB documentation.

Using Counter Collection

Consider the following products document. We want the _id field to be an auto-

incremented integer sequence starting from 1,2,3,4 upto n.

{

 "_id":1,

 "product_name": "Apple iPhone",

 "category": "mobiles"

}

For this, create a counters collection, which will keep track of the last sequence value for
all the sequence fields.

>db.createCollection("counters")

Now, we will insert the following document in the counters collection with productid as
its key −

{

 "_id":"productid",

 "sequence_value": 0

}

The field sequence_value keeps track of the last value of the sequence.

Use the following code to insert this sequence document in the counters collection −

>db.counters.insert({_id:"productid",sequence_value:0})

39. MongoDB ─ Auto-Increment Sequence

MongoDB

96

Creating Javascript Function

Now, we will create a function getNextSequenceValue which will take the sequence

name as its input, increment the sequence number by 1 and return the updated sequence

number. In our case, the sequence name is productid.

>function getNextSequenceValue(sequenceName){

 var sequenceDocument = db.counters.findAndModify({

 query:{_id: sequenceName },

 update: {$inc:{sequence_value:1}},

 new:true

 });

 return sequenceDocument.sequence_value;

}

Using the Javascript Function

We will now use the function getNextSequenceValue while creating a new document and
assigning the returned sequence value as document's _id field.

Insert two sample documents using the following code −

>db.products.insert({

 "_id":getNextSequenceValue("productid"),

 "product_name":"Apple iPhone",

 "category":"mobiles"

})

>db.products.insert({

 "_id":getNextSequenceValue("productid"),

 "product_name":"Samsung S3",

 "category":"mobiles"

})

As you can see, we have used the getNextSequenceValue function to set value for the _id

field.

MongoDB

97

To verify the functionality, let us fetch the documents using find command −

>db.prodcuts.find()

The above query returned the following documents having the auto-incremented _id field

{ "_id" : 1, "product_name" : "Apple iPhone", "category" : "mobiles"}

{ "_id" : 2, "product_name" : "Samsung S3", "category" : "mobiles" }

DAFTAR PUSTAKA

MongoDB Tutorial https://www.tutorialspoint.com/mongodb/ di-akses tanggal 31 Agustus

2017 di Jakarta

P M. Tamer Özsu and Patrick Valduriez, (2011), Principles of Distributed Database Systems,

Third Edition, Springer Publishing ISBN 978-1-4419-8833-1

Ajay D. Kshemkalyani and Mukesh Singhal, (2008), Distributed Computing - Principles,

Algorithms, and Systems, Cambridge University Press, ISBN-13 978-0-511-39341-9

https://www.tutorialspoint.com/mongodb/

DAFTAR PUSTAKA

MongoDB Tutorial https://www.tutorialspoint.com/mongodb/ di-akses tanggal 31 Agustus

2017 di Jakarta

P M. Tamer Özsu and Patrick Valduriez, (2011), Principles of Distributed Database Systems,

Third Edition, Springer Publishing ISBN 978-1-4419-8833-1

Ajay D. Kshemkalyani and Mukesh Singhal, (2008), Distributed Computing - Principles,

Algorithms, and Systems, Cambridge University Press, ISBN-13 978-0-511-39341-9

https://www.tutorialspoint.com/mongodb/

