by Ken Martina Kasikoen

Submission date: 21-Jul-2020 02:48PM (UTC+0700)

Submission ID: 1360321414

File name: lah_Penduduk_Di_Masa_Datang_Studi_Kasus_Kabupaten_Cilacap-01.pdf (393.8K)

Word count: 3717

Character count: 22071

PEMANFAATAN MODEL SISTEM DINAMIS DALAM MEMPERKIRAKAN JUMLAH PENDUDUK DI MASA DATANG STUDI KASUS : KABUPATEN CILACAP

Ken Martina Kasikoen
Jurusan Teknik Planologi - Universitas Esa Unggul Jakarta Jln.
Arjuna Utara No. 9, Tol Tomang Kebon Jeruk Jakarta 11510
nratnawati@yahoo.com

Abstrak

Dalam kegiatan perencanaan, faktor penduduk merupakan hal yang sangat penting, utamanya perkiraan jumlah penduduk. Hal ini mengingat perencanaan adalah untuk masa depan, sehingga sebelum merencana sebagai dasar pertimbangan adalah perkiraan penduduk di masa depan. Untuk memperkirakan jumlah penduduk masa depan, berbagai model telah dikembangkan, seperti regresi linier, bunga berganda dan lain-lain. Namun model-model yang dikembangkan tersebut mempunyai keterbatasan, karena faktor-faktor yang dipertimbangkan hanya jumlah penduduk masa lampau, inmigrasi dan out-migrasi. Dalam kenyataannya, selain jumlah penduduk berbagai faktor lain sangat terkait dengan jumlah penduduk pada suatu wilayah, seperti kondisi ekonomi, kesehatan, kebijakan pemerintah, ketersediaan lahan permukiman, ketersediaan lapangan kerja, dan lain-lain. Faktorfaktor tersebut dapat menjadi variabel-variabel yang dapat dipertimbangkan mempengaruhi jumlah penduduk. Penelitian ini bertujuan memperkirakan jumlah penduduk dengan menggunakan model sistem dinamis, yang dapat mengaitkan variabel-variabel lain selain jumlah penduduk historis, dan membandingkan dengan perkiraan jumlah penduduk dengan menggunakan model regresi linier dan bunga berganda. Agar supaya dapat diketahui apakah model tersebut dapat diterapkan pada suatu wilayah, maka dilkukan pada wilayah studi Kabupaten Cilacap, dengan pertimbangan, data yang tersedia pada kabupaten tersebut dapat mendukung penggunaan model sistem dinamis. Hasilnya menunjukkan bahwa penggunaan model sistem dinamis dalam memperkirakan jumlah penduduk masa datang, lebih mendekati kenyataan di lapangan, yaitu dengan perbedaan sebesar 0,13% sementara dengan menggunakan model regresi linier perbedaan sebesar 9,66% dan bunga berganda sebesar 0,62%. Dapat disimpulkan perkiraan jumlah penduduk dengan menggunakan model sistem dinamis lebih baik dan diusulkan digunakan dalam perencanaan wilayah.

Kata Kunci: Jumlah Penduduk, Perkiraan Jumlah Penduduk, Model Regresi Linier

Pendahuluan

Kegiatan perencanaan wilayah sebagai bagian yang tak terpisahkan dalam pembangunan wilayah mempunyai tahapan survey, analisis dan rencana. Dalam kegiatan analisis, diperlukan alat analisis yang rasional (rational tools) yang sesuai dengan tujuan dari analisis, sehingga hasilnya dapat menggambarkan kondisi di masa yang akan datang dan pada gilirannya dapat melakukan pilihan terbaik terhadap perubahan-perubahan yang mungkin akan terjadi sesuai dengan karakteristik wilayahnya.

Perencanaan wilayah yang dilakukan dalam rangka pembangunan masyarakat (community development) harus didasarkan pada pengetahuan mengenai kependudukan, kepada mana perencanaan wilayah ini ditujukan. Oleh karena itu jumlah, distribusi usia, status sosial-ekonomi dari penduduk menjadi faktor yang sangat penting dalam rangka

persiapan rencana atau menentukan alternatifalternatif kebijakan.

Salah satu pengetahuan mengenai kependudukan yang diperlukan dalam perencanaan wilayah adalah untuk mengetahui perkiraan jumlah penduduk di masa datang, karena salah satu manfaatnya adalah untuk memperkirakan fasilitas kehidupan yang harus disediakan di masa datang pada wilayah yang bersangkutan.

Perkiraan jumlah penduduk di masa datang yang dilakukan dalam perencanaan wilayah selama ini menggunakan model-model konvensional seperti "regresi linier", "bunga berganda" dan lain-lain. Pada model tersebut unsur keterkaitan antar berbagai faktor kurang diperhatikan. Keterkaitan hanya ditinjau dari jumlah dan perkembangan penduduk historis dari tahun-tahun sebelumnya. Pada kenyataannya, perkembangan penduduk selain

disebabkan oleh kelahiran, kematian, in-migrasi dan out-migrasi, juga disebabkan oleh faktor-faktor lain, seperti kondisi ekonomi, kesehatan, kebijakan pemerintah, ketersediaan lahan permukiman, ketersediaan lapangan kerja, dan lain-lain.

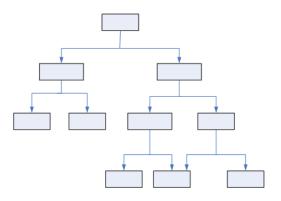
Diperlukan suatu model yang dapat menggambarkan keterkaitan variabel-variabel tersebut dalam memperkirakan jumlah penduduk di masa datang, sehingga didapat hasil yang lebih akurat dan mendekati kenyataan, model tersebut adalah model Sistem Dinamis (system dynamics). Agar dapat mengetahui kemampuan model, maka diterapkan pada suatu wilayah. Dipilih Kabupaten Cilacap sebagai wilayah studi untuk menerapkan perkiraan jumlah penduduk di masa yang akan datang dengan menggunakan model Regresi Linier, model Bunga Berganda dan model Sistem Dinamis. Dengan menggunakan data historis yang tersedia, dan melakukan simulasi, dapat diketahui model yang terbaik untuk digunakan dalam perkiraan penduduk di masa datang.

Kabupaten Cilacap merupakan kabupaten yang terletak di pesisir bagian selatan dari Pulau Jawa, sebagai salah satu dari kabupaten yang ada di Provinsi Jawa Tengah dan berbatasan dengan Provinsi Jawa Barat. Kabupaten ini dilalui oleh jalur lintas selatan Pulau Jawa yang terus mengalami perkembangan, utamanya dari segi penduduk. Menghadapi perkembangan dimasa datang, dalam analisis wilayah Kabupaten Cilacap diperlukan suatu model perkiraan jumlah penduduk yang lebih akurat.

Di Kabupaten Cilacap cukup tersedia data kependudukan yang memungkinkan untuk digunakan dalam melakukan percobaan berbagai model proyeksi penduduk, sehingga selain bermanfaat bagi kabupaten itu sendiri juga untuk perkembangan ilmu pengetahuan.

Penelitian ini bertujuan untuk melakukan percobaan penggunaan model analisis system Dinamis untuk memperkirakan jumlah penduduk, dan

membandingkannya dengan model-model perkiraan penduduk yang lain, seperti Regresi Linier dan Bunga Berganda.


Model

Muhammadi (2001) menyatakan bahwa

model adalah suatu bentuk yang dibuat untuk meni-

matriks, yang menyatakan hubungan antar unsur. Dalam model kualitatif tidak digunakan rumur-rumus matematik, statistik atau komputer. Model ikonik adalah model yang mempunyai bentuk fisik sama dengan barang yang ditirukan, mewskipun skalanya dapat diperbesar atau diperkecil. Dengan model ikonik tersebut dapat diadakan percobaan untuk mengetahui perilaku gejala atau proses yang ditirukan.

Muhammad Tasrif (2006) menyatakan model adalah gambaran (abstraksi) suatu sistem. Model dapat berupa model fisik dan model matematik. Bila digambarkan secara diagramatis adalah sebagai berikut:

Berdasarkan kedua pernyataan di atas, dapat dikatakan model suatu bentuk yang dibuat untuk menirukan suatu gejala atau proses sebagai gambaran abstraksi suatu sistem.

Model Analisis Regresi Linier

Salah satu cara untuk memperkirakan jumlah penduduk di masa datang adalah menggunakan ekstrapolasi dengan fungsi matematik, dimana rumus dasarnya adalah sebagai berikut (Warpani, 1980):

$$P_{t+\theta} = P_t + f(\theta)$$

Dimana

 $P_{t+\theta}$ = Jumlah Penduduk di daerah yang diselidiki pada tahun t + θ

P₁ = Jumlah Penduduk di daerah yang

rukan suatu gejala atau proses. Model ada tiga, kuantitatif, kualitatif dan ikonik. Model kuantitatif adalah model yang berbentuk rumus-rumus matematik, statistik atau komputer. Model kualitatif adalah model berbentuk gambar, diagram atau

diselidiki pada tahun t

= selisih tahun dari tahun dasar t ke tahun t

 $+\theta$

= fungsi perkembangan penduduk yang mencerminkan faktor biologi, sosial, ekonomi dan politik

Regresi linier adalah salah satu metode untuk memperkirakan jumlah penduduk di masa datang menggunakan ekstrapolasi dengan fungsi matematik. Rumus yang digunakan adalah sebagai berikut (Warpani, 1980):

$$P_{t+x} = a + b(X)$$

 P_{t+x} = Jumlah Penduduk tahun (t + X)

X = tambahan tahun terhitung dari tahun

a,b= tetapan yang diperoleh dari rumus berikut:

$$a = \frac{\sum P \sum X^{2} = \sum X \sum PX}{N \sum X^{2} - (\sum X)^{2}}$$

$$b = \frac{N \sum PX - \sum X \sum P}{N \sum X^2 - (\sum X)^2}$$

Model Analisis Bunga Berganda

Bunga Berganda adalah salah satu metode untuk memperkirakan jumlah penduduk di masa datang menggunakan ekstrapolasi dengan fungsi matematik. Dalam model Bunga Berganda menganggap perkembangan jumlah penduduk akan berganda dengan sendirinya. Rumus yang digunakan adalah sebagai berikut (Warpani, 1980):

 $P_{t+\theta}$ = Jumlah Penduduk di daerah yang diselidiki pada tahun $t + \theta$

= Jumlah Penduduk di daerah yang diselidiki pada tahun t

 selisih tahun dari tahun dasar t ke tahun t θ

rata-rata persentase tambahan jumlah penduduk daerah yang diselidiki berdasarkan data masa lampayumal PLANESATM Volume 1, Nomor 2, November 2010 95

Model Analisis Sistem Dinamis

Dalam Muhammadi (2001) dinyatakan bahwa sistem adalah keseluruhan inter-aksi antar unsur dari sebuah obyek dalam batas lingkungan tertentu yang bekerja mencapai tujuan. Sedang Tasrif (2006) menyatakan sistem adalah suatu kumpulan unit-unit (bagian, komponen atau elemen) yang beroperasi dalam beberapa cara yang saling berhubungan.

Dari kedua pengertian di atas maka pengertian sistem dapat diartikan sebagai suatu kumpulan unit-unit (bagian, komponen atau ele-

men) atau unsur dari sebuah obyek yang beroperasi dalam beberapa cara yang secara keseluruhan saling berinteraksi dalam batas lingkungan tertentu yang bekerja mencapai tujuan.

Model dinamik adalah kumpulan dari variabel-variabel yang saling mempengaruhi antara satu dengan lainnya dalam suatu kurun waktu. Permodelan sistem dinamis mengasumsikan bahwa perilaku sistem terutama ditentukan oleh mekanisme feedback. Oleh sebab itu, setelah mendefinisikan batas sistem (yang dibedakan antara variabel eksternal dan internal), deskripsi feedback loops

merupakan langkah selanjutnya dalam proses pemodelan sistem dinamis.

Simulasi ialah metode yang digunakan un-

tuk mempelajari dinamika sistem. Simulasi merupakan upaya untuk menirukan beroperasinya suatu sistem melalui (menggunakan) suatu model. Simulasi memberikan suatu deskripsi perilaku sistem dalam perkembangannya sejalan dengan bertambahnya waktu. Shannon (1975 dalam Tasrif 2006) mendefinisikan simulasi sebagai berikut:

"Simulation is the process of desinging a model of real system and conducting experiments with this model for the purpose either of understanding behaviour of the system or of evaluating various strategies (within the limits imposed by a criterion or set of criteria) for the operation of the system".

Hasil dan Pembahasan

Kabupaten Cilacap terletak di Provinsi Jawa Tengah, dan berada pada 7° 30′ - 7° 45′ 20" Lintang Selatan dan 108°4'30" - 109°30'30" Bujur Timur. Secara geografis Kabupaten Cilacap mempunyai batas-batas wilayah yaitu:

Sebelah Utara : Kabupaten Banyumas dan

Kabupaten Brebes

Sebelah Selatan : Laut Indonesia Sebelah Barat : Provinsi Jawa Barat Sebelah Timur : Kabupaten Kebumen

Jurnal PLANESATM Volume 1, Nomor 2, November 2010

96

Secara administratif, Kabupaten Cilacap terdiri atas 24 kecamatan, seperti terlihat pada Gambar 1.

Berdasarkan kependudukan, diketahui jumlah penduduk di Kabupaten Cilacap terus meningkat sejak tahun 1986 s/d tahun 2006. Pada tahun 1986 jumlah penduduk baru mencapai 1.415.466 jiwa, namun pada tahun 2006 telah meningkat menjadi 1.722.607 jiwa (lihat tabel 1.). Melihat kecenderungan yang sterjadi selama 20 tahun tersebut, diperkirakan jumlah penduduk pada 10 (sepuluh) tahun yang akan datang akan terus meningkat. Kepadatan penduduk di Kabupaten Cilacap pada tahun 2006 mencapai 806 jiwa/km². Dari 24 (dua puluh empat) kecamatan yang ada, Kecamatan Majenang mempunyai jumlah penduduk terbesar, yaitu 121.328 jiwa, sedang Kecamatan Cilacap Selatan mempunyai kepadatan penduduk tertinggi yaitu sebesar 8.478 jiwa/km2. Hal ini tidak mengherankan karena Kecamatan Majenang merupakan kecamatan yang berada di jalur lintas selatan Pulau Jawa sehingga aksessibilitas sangat tinggi, juga merupakan kota tua, sehingga menimbulkan daya tarik tersendiri bagi penduduk untuk menetap di kecamatan ini.

Tabel 1 Perkembangan Jumlah Penduduk di Kabupaten Cilacan Tahun 1986 s/d 2006

TAHUN	JUMLAH PENDUDUK	TAHUN	JUMLAH PENDUDUK
1986	1.415.466	1997	1.633.952
1987	1.424.367	1998	1.642.725
1988	1.432.047	1999	1.652.019
1989	1.441.749	2000	1.671.779
1990	1.455.877	2001	1.689.214
1991	1.499.401	2002	1.696.765
1992	1.509.364	2003	1.704.596
1993	1.516.747	2004	1.709.908
1994	1.537.158	2005	1.716.235
1995	1.550.283	2006	1.722.607
1996	1.617.772		

Sumber BPS Kabupaten Cilacap

Berdasarkan kondisi ekonomi, pada tahun 2006 Kabupaten Cilacap dapat diketahui bahwa sektor industri pengolahan menempati posisi tertinggi, disusul oleh sektor perdagangan, hotel dan restoran serta sektor pertanian. Untuk sektor pertambangan dan penggalian serta sektor listrik dan air minum merupakan 2 (dua) sektor yang kurang berperan dalam pembentukan PDRB Kabupaten Cilacap. Untuk lebih jelasnya lihat tabel 2.

Berdasarkan tabel 2 dapat diketahui distribusi PDRB selama periode Tahun 2003-2006 meningkat pada beberapa sektor walaupun tidak terlalu signifikan. Pada tahun 2006 saja, persentase sektor pertanian sebesar 13,11%, sektor pertambangan dan penggalian sebesar 1,13%, sektor industri pengolahan sebesar 55,89 %, sektor listrik dan air minum sebesar 0,35 %, sektor bangunan 1,79 %, sektor perdagangan dan restoran sebesar 20,96%, sektor pengangkutan dan komunikasi 1,99%, sektor keuangan, persewaan dan jasa perusahaan sebesar 1,88%, serta sektor jasa - jasa sebesar 2,89%.

Perkiraan Jumlah Penduduk menggunakan Model Regresi Linier.

Hasil perhitungan jumlah penduduk di Kabupaten Cilacap dari tahun 2007 sampai dengan 2016 didapatkan nilai **a** = **1.515.455 dan b** = **37.352,31.** Sehingga didapatkan persamaan sebagai berikut: **Y** = **1.515.455 + b 37.352,31,** hasil per-

hitungan jumlah penduduk dari <mark>tahun 2007 s/d</mark> tahun 2016 dapat dilihat pada Tabel 3

Gambar 1 Peta Administratip Kabupaten Cilacap

Dengan menggunakan model eksponensial, Tabel 2 PDRB Kabupaten Cilacap Atam Dasaii Hair gark vatstan 12000 gkat pertumbuhan sejak

Lapangan U aha		Menurut Lapangan Usaha 2003		2005	2006
1	Pertanian	2.529.953,85	2.584.061,97	2.636.952,30	2.694.008,84
2	Pertambangan dan Penggalian	194.347,61	202.689,66	217.307,50	232.204,69
3	Industri Pengolahan	9.231.399,14	9.963.465,74	10.904.122,01	11.481.971,23
4	Listrik dan Air Minum	58.851,98	60.428,54	67.121,06	71.083,30
5	Bangunan	318.654,45	332.104,29	348.709,05	368.671,43
6	Perdag, Hotel dan Restoran	3.498.045,89	3.785.810,53	4.082.746,42	4.305.916,97
7	Angkutan dan Komunikasi	302.301,43	322.311,82	356.269,75	408.733,99
8	Keuangan, Persewaan dan Jasa Perusahaan/ Financial	326.384,05	334.414,42	364.553,23	386.112,20
9	Jasa – Jasa	569.266,66	577.110,87	587.439,75	594.641,85
	Jumlah	17.029.165,06	18.162.397,84	19.565.221,07	20.543.344,50

Sumber:BPS Kab.Cilacap Tahun2006

Tabel 3 Proyeksi Penduduk dengan Model Regresi Linier Tahun 2007 s/d 2016

TAHUN	PERKIRAAN JUMLAH PENDUDUK
2007	1.926.330
2008	1.963.683
2009	2.001.035
2010	2.038.387
2011	2.075.740
2012	2.113.092
2013 2014	2.150.444 2.187.797
2015	2.225.149
2016	2.262.501

Sumber: Hasil perhitungan

Terlihat perkembangan jumlah penduduk terus meningkat sepanjang tahun 1986 sampai dengan 2016.

Perkiraan Jumlah Penduduk menggunakan

tahun 1986 s/d tahun 2006 sebesar 0,99%, sedang pada tabel 4 dapat dilihat perkiraan jumlah penduduk sampai tahun 2016.

TAHUN	JUMLAH & PERKIRAAN JUMLAH PENDUDUK
2007	1.739.661
2008	1.756.883
2009	1.774.277
2010	1.791.842
2011	1.809.581

Model Bunga Berganda

Pemanfaatan Model Sistem Dinamis Dalam Memperkirakan Jumlah Penduduk Di Masa Datang

		Stuat Kasus: Kabupatén Cuacap
2012	1.827.496	
2013	1.845.588	
2014	1.863.860	
2015	1.882.312	
2016	1.900.947	

Tabel 4 Perkiraan Jumlah Penduduk di Kabupaten Cilacap Pada Tahun 2007 s/d 2016 dengan Model Bunga Berganda

Sumber : Hasil perhitungan

Perkiraan Jumlah Penduduk Menggunakan Model Dinamis

Pemodelan sistem dinamis sangat sesuai untuk menggambarkan perilaku antar variabel dari suatu masalah yang mempunyai sifat dinamis dan

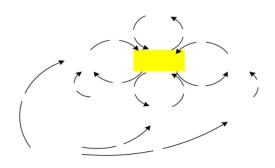
mempunyai struktur umpan balik. Menurut Tasrif (1985 dalam Mulyana, 1999) pemodelan sistem dinamis terdiri atas enam tahapan, yaitu: definisi masalah, konseptualisasi sistem, reoresentasi model, analisis perilaku model, analisis kebijakan dan implementasi model.

Diagram simpal kausal adalah pengungkapan tentang kejadian hubungan sebab akibat (causal relationship) ke dalam bahasa gambar tertentu (Muhammadi, 2001). Digambarkan dalam bentuk anak panah yang saling mengait. Bulu panah mengungkapkan sebab dan ujung panah mengungkapkan akibat.

Perkembangan jumlah penduduk pada suatu wilayah dapat dipengaruhi oleh berbagai variabel, seperti angka kelahiran, kematian, migrasi masuk, migrasi keluar, tingkat kesuburan (fertilitas), angka harapan hidup, pendapatan, ketersediaan lahan permukiman, harga lahan permukiman, lapangan kerja, tingkat pengangguran, kebijakan Keluarga Berencana yang dicanangkan di wilayah tersebut, dan lain-lain. Tidak ada variabel yang merupakan variabel dependent maupun variabel independent, hal ini mengingat variabel-variabel tersebut mempunyai keterkaitan satu dengan yang lain dan saling mempengaruhi satu sama lain.

Untuk menggambarkan dan memperhitungkan perkembangan jumlah penduduk pada suatu wilayah, selain digambarkan keterkaitan antar variabel juga diperlukan dukungan data. Pada kenyataan di lapangan sering tidak tersedia data seperti yang diinginkan dalam model, oleh karena itu perhitungan jumlah penduduk di masa datang dapat dilakukan dengan menggunakan data yang tersedia yang memungkinkan untuk dilakukan proyeksi penduduk yang masih dapat diterima secara logika. Artinya beberapa data yang pengaruhnya tidak begitu besar dan data tidak tersedia dapat diabaikan.

Diagram alir (flow diagram) adalah gambaran suatu sistem yang menggambarkan hubungan antara variabel-variabel. Variabel-variabel tersebut digambarkan dalam beberapa simbol, yaitu simbol aliran yang dihubungkan dengan simbol level me-


lalui simbol panah tebal. Sedangkan panah haslus yang menghubungkan antara level dengan aliran proses informasi umpan balik. Diagram alir

menggambarkan struktur dari model (Muhammadi, 2001).

Kabupaten Cilacap mempunyai data perkembangan jumlah penduduk sejak tahun 1986 sampai dengan tahun 2006 dan mempunyai data seperti terlihat pada gambaran umum di atas. Dengan asumsi tingkat kesuburan sebesar 0,02 (sesuai dengan tingkat kesuburan nasional) dan angka harapan hidup 68,27 tahun. Selanjutnya dilakukan simulasi untuk memperkirakan jumlah penduduk pada tahun 2016, dengan menggunakan perangkat lunak Powersim 2.4.

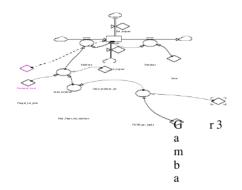

Secara konseptual, diketahui bahwa perkembangan jumlah penduduk di Kabupaten Cilacap dapat disebabkan oleh natalitas (kelahiran), mortalitas (kematian) migrasi masuk dan migrasi keluar. Natalitas dipengaruhi oleh tingkat kesuburan (fertilitas), sedang mortalitas dipengaruhi oleh angka harapan hidup (AHH). Pendapatan mempengaruhi natalitas dan migrasi keluar, serta angka harapan hidup.

Diagram simpal kausal yang dihasilkan seperti terlihat pada gambar 2, berikut ini:

Gambar 2
Diagram Simpal Kausal Kependudukan di
Kabupaten Cilacap dengan mempertimbangkan
Efek Pendapatan

Diagram alir untuk perkiraan jumlah penduduk di Kabupaten Cilacap dapat dilihat pada gambar 3 berikut ini

Pentistish, for al

perkembangan Pendapatan Daerah Regional Bruto (PDRB) pada tahun 2003 sampai dengan 2006

Diagram Alir Struktur Kependudukan di Kabupaten Cilacap Mempertimbangkan PDRB

Jurnal PLANESATM Volume 1, Nomor 2, November 2010

10

Persamaan powersim yang dihasilkan adalah sebagai berikut:

init Populasi = Penduduk_Awal

flow Populasi = +dt*in migrasi +dt*Outmigrasidt*Kematian+dt*Kelahiran

Aux Kelahiran = Populasi*fraksi_kelahiran

Aux Kematian = Populasi/Umur Aux

Efek_Pdptn_thd_kelahiran =

GRAPH(PDRB_per_kapita,0,0.5,[1.5,1.31,1.2,1.16,1. 11,1.01,1.05,1.02,0.99,0.95,0.93"Min:0;Max:1.5"])

Aux fraksi kelahiran =

fraksi_kelahiran_nor/100)*Efek_Pdptn_thd_kelahir

an*Pengali_kel_ydkh

Aux PDRB_per_kapita = PDRB/Penduduk_Awal

Const in_migrasi = 1

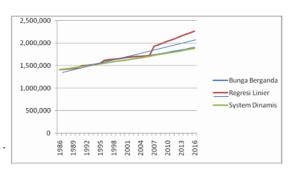
Const Outmigrasi = 1

Const fraksi_kelahiran_nor = 2

Const PDRB = 7048602680000

Const Penduduk_Awal = 1704596

Const Pengali_kel_ydkh = 1


Const Umur =68.27

10

Selanjutnya dari hasil simulasi didapatkan hasil perhitungan yang dapat dilihat pada Tabel 5 sedang grafik perkembangan jumlah penduduk sejak tahun 2003 sampai dengan tahun 2016 seperti terlihat pada gambar 4

Tabel 5 Perkiraan Jumlah Penduduk di Kabupaten Cilacap Pada Tahun 1986 s/d 2016 dengan Model System Dinamic Mampartimbangkan PDPR

Dinar	nis Mempertimbangkan PDRB	— dan kondis	-
TAHUN	JUMLAH PENDUDUK	0 1	erbedaan
	MEMPERTIMBANGKAN PDRB	menggunak	
2003	1.704.596	mempertim (lihat tabel (
2004	1.711.335	Perkiraan	Jumlah Pe
2005	1.718.101	Kondisi Nya	_
2006	1.724.893		PERKIRA
2007	1.731.712	TAHUN	JUMLA
2008	1.738.559		PENDUD
2009	1.745.432	2006	1.722.6
2010	1.752.332		
2011	1.759.260	2006	1.888.
2012	1.766.215	2006	1 722
2013	1.773.198	2006	1.733.
2014	1.780.208	2006	1.724.
2015	1.787.246		
2016	1.794.311		
Sumber : Hasil P	erhitungan 11		

Gambar 4 Grafik Perkembangan Jumlah Penduduk Tahun 1986 s/d 2016 dengan Model Regresi Linier, Bunga Berganda dan System Dinamis

Terlihat hasil perhitungan menunjukkan perbedaan. Pada gambar, perhitungan dengan menggunakan model regresi linier pada tahun 2006 mempunyai perkiraan jumlah penduduk yang relatif jauh menyimpang dari kondisi nyata. Sedang dengan menggunakan metode bunga berganda dan system dinamis perkiraan jumlah penduduk pada tahun 2006 mendekati kondisi nyata.

Dari hasil perhitungan perkiraan jumlah penduduk dengan menggunakan model regresi linier, bunga berganda, dan sistim dinamis mempertimbangkan PDRB diketahui bahwa perkiraan jumlah penduduk dengan model regresi linier mempunyai perbedaan terbesar yaitu 9,66% dari kondisi nyata di lapangan pada tahun 2006, adalah terkecil dengan del sistem dinamis yang PDRB, yaitu sebesar 0,13%

Tabel 6 Penduduk dan Perbedaan dengan n Menggunakan Berbagai Model di

10.101	Kabupaten Cilacap			
224.893		PERKIRAAN		
31.712	TAHUN	JUMLAH	MODEL	PERBEDAAN
738.559		PENDUDUK		(%)
745.432	2006	1.722.607	Kondisi Nyata di	0
752.332			Lapangan	
759.260	2006	1.888.978	Regresi Linier	9,66
766.215	2006	1.733.226	Bunga	0,62
773.198	2000	1.755.220	Berganda	0,02
780.208	2006	1.724.893	Sistem	0,13
787.246			Dinamis dengan	
794.311			pertimban gan PDRB	
Jurnal PLANESA™ Volume 1	, Nomor 2, No	vember 2010		10

Sumber : Hasil Perhitungan

Jurnal PLANESATM Volume 1, Nomor 2, November 2010

10

Kesimpulan

Dari hasil perhitungan perkiraan jumlah penduduk dengan mengunakan model regresi linier, bunga berganda, maupun sistem dinamis diketahui bahwa perbedaan terkecil hasil perhitungan dengan kondisi nyata adalah apabila perhitungan perkiraan jumlah penduduk menggunakan model sistem dinamis yang mempertimbangkan PDRB atau kondisi ekonomi. Dengan demikian dapat ditarik kesimpulan bahwa model yang terbaik di antara ke tiga model yang digunakan adalah perkiraan jumlah penduduk dengan menggunakan Model System Dinamis yang mempertimbangkan PDRB. Selanjutnya diusulkan dalam memperkira-kan jumlah penduduk masa datang pada suatu wilayah dapat menggunakan pemodelan sistem dinamis.

Daftar Pustaka

Muhammadi, dkk, "Analisis Sistem Dinamis – Lingkungan Hidup, Sosial, Ekonomi, Manajemen", UMJ Press, Jakarta, 2001.

- Mulyana, Ridwan, "Kajian Dinamika Pengelolaan Sumberdaya Pesisir : Pendekatan System Dynamics", Program Magister Studi Pembangunan ITB, Bandung, 1999.
- Oppenheim, Nobert, "Applied Models in Urban and Regional Analysis", Prentice-Hall, Inc, New Jersey, 1980.
- Sudjana, "Metoda Statistika", Penerbit Tarsito.
 Bandung, 1996.
- Tasrif, Muhammad, "Analisis Kebijakan Menggunakan Model System Dynamics – Modul Kuliah/Kursus", Program Magister Studi Pembangunan ITB, Bandung, 2006.
- Warpani, S, "Analisis Kota dan Daerah", Penerbit ITB, Bandung, 1984.

	<u> </u>				
ORIGINA	ALITY REPORT				
	3% ARITY INDEX	14% INTERNET SOURCES	9% PUBLICATIONS	15% STUDENT PAP	PERS
PRIMAR	RY SOURCES				
1	"Urbaniz Urban Aı (Case St Regency	ya, E Martini, K Mation and Land Land Land Land Land Land Land	Ise Changes i Analysis Metl n Areas, Bogo ce Series: Ea	hods or	6%
2	repositor Internet Source	y.ipb.ac.id			2%
3	docoboo Internet Source				2%
4	eprints.u Internet Source				2%
5	Submitte Student Paper	d to Universitas	Diponegoro		2%
6	library.bi	nus.ac.id			1%

7	pt.scribd.com Internet Source	1%
8	Submitted to Fakultas Ekonomi Universitas Indonesia Student Paper	1%
9	fr.scribd.com Internet Source	1%
10	Submitted to Universitas Krisnadwipayana - Faculty of Administration Student Paper	1%
11	Submitted to Universitas Mulawarman Student Paper	1%
12	mafiadoc.com Internet Source	<1%
13	Submitted to Universitas Muhammadiyah Surakarta Student Paper	<1%
14	anzdoc.com Internet Source	<1%
15	sitinurojiyah.blogspot.com Internet Source	<1%
16	Submitted to General Sir John Kotelawala Defence University Student Paper	<1%

<1%
<1%
<1%
<1%
<1%
<1%
<1%
<1%
<1%
<1%

Exclude quotes

On

Exclude matches

Off

Exclude bibliography

On

Esa U

Esa

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
,	
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	
PAGE 11	
PAGE 12	
PAGE 13	

