1-52.0-52352938520300690-
main_1.pdf

by

Submission date: 03-Feb-2022 11:48AM (UTC+0700)
Submission ID: 1753943193

File name: 1-s2.0-52352938520300690-main_1.pdf (2.45M)
Word count: 8974

Character count: 46064



Remote Sensing Applications: Society and Environment 19 (2020) 100335

Contents lists available at ScienceDirect

Remote Sensing Applications: Society and Environment

ELSEVIER journal homepage: hitp://www.elsevier.com/locate/rsase | S

Check for

Analyses of inter-class spectral separability and classification accuracy of W
benthic habitat mapping using multispectral image

Piamaditya Wicaksono “ , Prama Ardha Aryaguna "

? Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakart, 55281, Indonesia
® Faculty of Engineering, Universitas Esa Unggul, Jakarra, 11510, Indonesia

ARTICLEINFO ABSTRACT

Keywords: .eoretically. spectral separability will greatly affect the accuracy of multispectral classification. This study aims

Sepafab_”it)' to understand the relationship between the inter-class spectral separability and the accuracy of benthic habitat

mﬁl"_v‘ew'z classification using a WorldView-2 multispectral image. The study area for this research is Kemujan Island,
I

Jepara Regency, Central Java Province, Indonesia. The datasets used are sunglint-corrected bands, Principle
Component Analysis (PCA)-derived bands, vegetation indices, and filter occurrence bands. Benthic habitat field
data were obtained through a photo-transect survey technique and were used to construct nine levels of benthic
habitat hierarchical classification schemes. We used maximum likelihood (ML) and random forest (RF) as the
classification algorithms, Spectral separability was caleulated using the Jeffries-Matusita separability analysis
algorithm. The results from both RF and ML showed that the increased number of class pairs with spectral
separability less than 1.0 (5. 1) decreased the OA and an increased number of class pairs with 5.1 g.1. ¢ increased
the DA, Especially for scheme Level 1 with the greatest number of ¢lasses, an increased number of class pairs with
S. 19 tois required to improve the OA. This has proven that the spectral separability between classes does affect
the accuracy of benthic habitat classification and there is a significant relationship between spectral separability
and the accuracy of benthic habitat classification.

Classification accuracy

1. Introduction library can also be used to obtain pure endmember for Linear Spectral
Unmixing (LSU) and Spectral Angle Mapper (SAM) (Wicaksono et al.,
2019). In integrating field survey data, there is sometimes a gap between

the information obtained in the field and the information recorded on

Benthic habitat mapping is generally done through the integration of
remote sensing and field data (Kutser et al., 2020). The integration

process can be done through, among other methods, pixel-based digital
classification (Oppelt et al., 2012 (Wicaksono et al., 2019),
Object-based Image Analysis [OBI' (Phinn et al., 2012) (Roelfsema
et al., 2013}, derivative analysis (Kutser et al., 2006) (Oppelt et al.,
2012) and empirical modeling (Yang et al., 2011) (Joyce et al., 2013)
{(Wicaksono and Hafizt, 2013). The per-pixel classification and OBIA are
applied to map information at the categorical data level (nominal and
ordinal data), whereas empirical modeling and derivative analysis are
used for the mapping of benthic habitat information at the continuous
data level (e.g. intervals and ratios).

In the process of digital classification of bemh.habi[als, training
areas are generally obtained through field survey (Green et al, 2000)
(Goodman et al., 2013) (Kutser et al., 2020). Visual interpretation on
high spatial resolution images can be used to select the training area if
done by an expert or people with high local knowledge. The spectral

* Corresponding author.

the image (Hedley et al, 2012). Not all field information can be
well-recognized by the sensor, especially by SEI.JIS with low spatial,
spectral, and radiometric resolution. This gap is one of the factors that
affect the classification accuracy of remote sensing data.

Benthic habitat is one of the objects on the earth surface that is quite
difficult to identify through satellite images, due to the fact that: (1) they
are located underwater, hence the influence of sunglint (Kay et al.,
2009) and energy attenuation by the water column (Hedley eral., 2012)
(Zoffoli et al., 2014) contributes to the overall spectral response of
benthic habitat recorded by the sensor, (2) there is a wide variety of
biota with very high or similar spectral response variations, which is due
to the almost identical pigment composition and concentration con-
tained by the biota (Penuelas et al., 1993) {Hochberg and Atkinson,
2000) (Oppelt et al., 2012) (Wicaksono et al., 2019). This condition
results in the identification of benthic habitat variations in multispectral
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images and medium-to-low spatial resolution images being difficult, and
(3) benthic habitat classification schemes used to label each field sample
do not necessarily reflect or build on the maximum descriptive resolu-
tion of the remote sensing data used (Wicaksono et al., 2013). As a
result, the accuracy of benthic habitat mapping is often inconsistent and
very difficult to compare with one another.

Therefore, after the labeling of field samples, it is necessary to test
whether the classes in the classification scheme are truly distinguishable
by the spectral bands used in the classification process. One approach
that can be used to test the spectral-separability between classes is by
using the Jeffries-Matusita (J-M) distance method (Richards, 2013)
(Eugenio et al., 2015). This method calculates the interclass spectral
separability in the classification scheme. The closer the distance or
separation between classes, the more the two classes are vulnerable to
being misclassified and vice versa.

The purpose of this study is to assess the relationship between the
spectral separability between benthic habitat classes in different classi-
fication schemes and the resulting classification accuracy. The remote
sensing image used is WorldView-2, the spectral separability was

Kilomelers
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calculated using the J-M distance method, the benthic habitat classifi-
cation scheme refers to the composition of the benthic habitat in situ
constructed based on field survey, the digital classification was per-
formed by per-pixel classification algorithms, and the relationship be-
tween inter-class spectral separability and classification accuracy was
analyzed using correlation and regression analysis. OBIA was not
applied in this research because the implementation of OBIA will
complicate the process of quantifying the relationship between classi-
fication accuracy and inter-class spectral separability, since the accuracy
from an OBIA classification result does not only rely on the spectral
response difference between benthic habitats alone, but also takes into
consideration their spatial aspects, e.g., texture, shape, size.

2. Study area
This research was conducted in Kemujan Island, Karimunjawa
Islands, Central Java Province, Indonesia (Fig. 1). Kemujan Island was

chosen as the study area because it has a complete morphological and
ecological variation of benthic habitat. Kemujan is the only island in the

¥4 1000 1.4 000 | .I|_|-

Fig. 1. The location of the study area and the true color composite of WorldView-2 image used in this study (RGB 532). (For interpretation of the references to color

in this figure legend, the reader is referred to the Web version of this article.)
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Karimunjawa Islands, among a few of the small islands of Indonesia, to
‘ve a complete coral reef morphology configuration of, e.g. Reef flat,
back reef, lagoon, reef crest, fore reef, reef cut, spur and groove, shelf,
and escarpment. In addition to having a high variety of coral reef life-
forms, Kemujan Island is home to several seagrass species, e.g., Enha-
lus acoroides, Thalassia hemprichii, Cymodocea romndata, and macro-
algae, e.g., Padina Sp., Caulerpa Sp., Sargassum Sp., Dictyota Sp.,
Eucheumna Sp. Furthermore, each benthic habitat is not always found ina
single homogenous cluster, instead, they are also commonly found
overlapping@®nd interleaving each other, e.g., seagrass with macroalgae
and rubble, coral reefs and macroalgae, and dead coral with macroalgae,
especially in the lagoon, back reef, and reef flat area, which make it
challenging to map using remote sensing. Thus, Kemujan Island is well
suited to test the spectral separability of benthic habitat classes. The
mapping depth-limit of our study area is 17.6 m. This is based on the
maximum depth of penetration of Quickbird's blue band in Kar-
imunjawa Islands {(Wicaksono and Hafizt, 20132). Quickbird blue band's
(447-512 nm) has almost similar range with WV2's blue band (450-510
nm), hence their maximum DOP will be relatively similar. Although
variations in water quality, sun angle, and sea conditions can cause
variations in maximum depth of penetration between Quickbird's and
WorldView-2 recording dates, the difference will not be significant.

3. Image data

This study used a WorldView-2 (WV2) image recorded on May 24,
2012. The WV2 image was selected to represent the state-of-the-art
development of a multispectral satellite system, primarily because of
the number of spectral bands capable of penetrating a body of water
(Table 1). WorldView-3 (WV3) is newer, but the number of visible bands
is similar to WorldView-2 and there is no available archive of WV3
images for our study area. This image has a spatial resolution of 2 m (not
1.84 m due to the off-nadir viewing angle of 14.5°), an 11-bit radio-
metric resolutiorfand has a new cyan, yellow, and red-edge band
lacking in other high spatial resolution multispectral images such as
Quickbird, IKONOS, PlanetScope, SkySat, and Geoeye-1. The WV2
image was acquired on LV3X and has been ortho-rectified. Fig. | shows
the WV2 image used in this study. The overall quality of the WV2 is very
good with no cloud cover and haze over optically shallow water pixels.
However, sunglint is visible, especially in the reef crest, the seaward
margin of the fore reef, and the optically deep water. Based on this, in
addition to performing atmospheric correction, we also applied sunglint
correction.

4. Methods
4.1. Field survey

A benthic habitat field survey was conducted using photo-transect
techniques (Roelfsema and Phinn, 2009). The location of the transect
was chosen by considering the variation of benthic habitat in the study
area as observed from visual analysis of the true color composite of the
WV2 image. In total, 1614 benthic photos were obtained and used as
samples; 1086 and 528 samples were used as a training area for classi-
fication and accuracy assessment, respectively. Each field sample was
labeled based on the composition of its benthic habitat. Benthic classes
considered in this study are Coral reefs, Dead coral, Seagrass, Macro-
algae, Sand, and Rubble. Each sample has nine labels of benthic habitat
composition, representing different levels of information precision
(Table 3).

4.2, Image corrections
Image corrections include sensor calibration, atmospheric correc-

tion, and sunglint correction. The sensor calibration performed
using the formula provided by (Updike and Comp, 2010) using absolute
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calibration coefficients provided in the image header to convert Digital
Num| (DN) to at-sensor Radiance. The atmospheric correction was
done using the Dark-Object Subtraction (DOS) technique (Lantzanakis
et al., 2016). The dark target to model the atmospheric offset was esti-
mated from ﬂm.pl:icall}r deep-water pixel values. Sunglint correction
was performed using the method developed by (ledley et al, 2005),
using an empirical model of sunglint intensity variation relationship
between visible bands and near-infrared (NIR) bands. Since the WV2
image has two NIR bands, empirical modeling was run twice for each
NIR band to find the best NIR band for correcting the sungliit on each
visible band. The NIR band 1 was used to correct sunglint in cyan, blue,
green, and red band while NIR band 2 was used to correct sunglint in the
yellow and red-edge band. Afterwards, we applied water column
correction to normalize the effect of water column energy attenuation in
the benthic habitat reflectance. The water-depth invariant bottom index
(DII) method developed by (Lyzenga, 1978) was used to perform water
column correction on six sunglint-corrected bands.

4.3. Image transformations

Image transformations applied to the atmospherically corrected
WV2 image are Principle Component Analysis {(PCA) and vegetation
index. PCA has been widely applied to remote sg@$ing images for
mapping and biophysical modeling, both terrestrial (Kattenborn et al.,
2015) and underwater {Wicaksono, 2016) {Manuputty etal., 2017). PCA
can improve the accuracy of classification and biophysi odeling
when compared to reflectance bands, e.g. blue, green, red (Kattenborn
et al., 2015){Wicaksono, 2016) (Manuputty et al., 2017). Some of the
advantages of implementing PCA include: 1) capable of producing
components (PC bands), where each contains information aggregation
from the input bands, so that information in each PC band is far more
effective and comprehensive than a single reflectance band, 2) capable
of separating information from noise, 3) more effective information on a
reduced number of bands, so the resources needed for data processing
and training area requirement are much lighter, and 4) minimize data
redundancy commonly encountered in multispectral and hyperspectral
data (Kattenborn et al., 2015)(Wicaksono, 2016).

PCA was applied to the six de-glinted reflectance bands whose land
and optically-deep water pixels were masked. The masking process in
PCA can improve the quality of PC bands, as it maximizes the variation
of information on specific objects. PCA was also applied to the stack of
vegetation indices listed in Table 2. We decided to use all PC bands in the
classification processes because our experiment on only using PC bands
with high eigenvalues yielded lower accuracy compared to when all PC
bands were used.

The use of vegetation index in this study is interesting because
vegetation index is practically effective for a land-based image pro-
cessing routine since the NIR band does not penetrate water body.

Table 1
WorldView-2 image specification used in this study.
Name WorldView-2
Correction Level LV3X
Date of Acquisition 24 May 2012
Solar Zenith 326
Off-Nadir viewing 145
Multispectral Bands Bands t\'elengrh Coefficient of Calibration
Cyan 400—45_0 nm 0.0059285654
Blue 450-510 nm 0.01783568
Green 510-580 nm 0.01364157
Yellow 535—'_625 nm 0.005829815
Red 630-690 nm 0.01103623
Red-edge 705-745 nm 0.005188136
Near-IR 1 770-895 nm 0.01224380
Near-IR 2 B60-1040 nm 0.009042234

Radiometric Resolution 11 bit
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Table 2

Formula of the vegetation index used in this study. Rg = blue band, . green
band, Ry = red band, Ryp = near-infrared band. For EVI, the value of €1 = 6, C2
=75 1L=1and G=25.

No.  Vegetation Formula
index
1 SR Rum/Ry
2 NDVI (Rrag — Re)/(Rsak + Ri)
3 VARI (Rg - Rg)/(Rg + Ry~ Ru)
4 EVI G (((Rum - R/ (Ryar + (C1 = Re) - (C2 = Ru) + L) (1 + L)

However, most vegetation index also involved red band, and some even
involved blue and green bands; these bands can penetrate water.
Therefore, we are aware that vegetation index still provides some usable
and useful information abo‘hc benthic habitat in the optically shallow
water ( ). The selected vegetation indices are the Simple Ratio (SR),
Normalized-Difference Vegetation Index (NDVI), Visible Atmospheri-
cally Resistant Index (VARI), and Enhanced Vegetation Index (EVI)
(Table 2). SR (Bir VicVey, 1968) was chosen because it is the
simplest vegetation mdcx and its use is very easy and nsive. NDVI
{Rouse et al., 1973) used in previous studies were able to improve the
accuracy of benthic habitat mapping (Wicaksono, 2010). VARI (Git
et al., 2002) was selected because all the inputs are visible bands, so it
can detect underwater object variations. EVI (Huete et al., 2002} is one
of the best vegetation indices with the ability to model vegetation with
high biomass. The use of blue band in EVI is expected to provide vari-

B = 18 ((x—v) (ZAZ)2) " (=) + (1200 (EA+Z 0200 / (22,0 )

ation of benthic habitat information in the presence of strong absorption
by water column and pigment contained in coral reefs, seagrass, and
macroalgae.

4.4. Filter occurrence

Previous research has shown that texture analysis can improve the

Fig. 2. Vegetation indices used in this research. These indices are still able to
provide information on benthic habitat variations. Darker pixels indicate
shallower waters,
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accuracy of seagrass mapping and benthic habitats (Massot-Campos
1) (Kakuta et al., 2016), which may be due to texture analysis
capable of representing more complex variations of information than the
spectral reflection of objects (M 15, 2002). In this
research, texture analysis was conducted using a filter based on the
first-order occurrence measure. This filter was applied on all six PC
bands and resulted in filtered PC bands with the following algorithms,
namely Mean (PCA-Mean), Variance (PCA-Variance), Data Range
{PCA-Data range), and Skewness (PCA-Skewness) (Anys et al., 1994),

tal., 201!

r and Edwa

4.5. J-M distance analysis

Several benthic habitat mapping works explicitly reported the use of
J-M distance analysis prior to the classification process to measure the
spectral separability between classes (L al., 2015) (Eu i

tal., 2017). This analysis was used to calculate the spectral separability
between classes at each benthic habitat classification scheme, using
training area statistics of each class based on probability distributions.
The spectral separability analysis was performed for all classification
inputs listed in Table 3. The range of values generated by this method is
0.0-2.0, where a value of 0.0 means that the pair of classes have a
perfect resemblance and the value of 2.0 indicates that the class pairs are
completely different. Ideally, the inter-class separability value in the
classification scheme used is more than 1.9. It is calculated using the
followings formulas (1 ]

enio et

Jy =218 a)

(2)

Where, x
object spectral response; £, = covariance matrix of sample
covariance matrix of sample y.

= vector of first object spectral response; y = vector of second
x5 Iy =

4.6. Image classifications

Digital classification algorithms used in this research are parametric
classification maximum likelihood (ML) (Mather and 111) and
non-parametric random forest (RF) machine learning algorithm

Koch, 2(

Table 3
Input bands for ML and RF classification algorithm.

Input types Description

Deglint! 6 sunglint-corrected WorldView-2 bands (cyan to red-edge)

PCA® & PC bands from the application of PCA to 6 Deglint bands'

Dt 15 Depth-invariant bottom indices from 6 sunglint-corrected
WorldView-2 bands’

VP Stack of 4 vegetation indices: SR, NDVI, EV1 and VARI

VI-PCA & PC bands from the application of PCA to VI

Deglint-SR & Deglint bands' and SR

DeglintNDVI 6 Deglint bands' and NDVI

Deglint-EVI 6 Deglint bands' and EVI

Deglint-VARI 6 Deglint bands' and VARI

PCA-5R 6 PC bands” and SR

PCA-NDVI & PC bands® and NDVI

PCA-EVI 6 PC bands” and EVI

PCA-VARI 6 PC bands® and VARI

PCA-Data Result of filtering with Dat range algorithm on 6 PC bands®

range

PCA-Mean Result of filtering with Mean algorithm on 6 PC bands™

PCA-Variance Result of filiering with Variance algorithm on 6 PC bands®

PCA-Skewness  Result of filtering with Skewness algorithm on 6 PC bands®
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(Breiman and Cutler, 2011). '.e ML is commonly used in the classifi-
cation of underwater objects (Andrefouet et al., 2003) (Pu et al., 2012)
(Zapata-Ramirez et al., 2013), and RF algorithm is being used more
frequently in benthic habitat mapping ell (Zhang et al, 2013)
(Zhang, 2015) (Wicaksono et al., 2019). For the RF parameters, the
number of trees is 100, the function to determine the number of
randomly selected is square root of all features, and the function to
determine the impurity in a node is Gini coefficient. The results of this
study may provide a better understanding and broadly relevant infor-
mation on the relationship of the accuracy of commonly and emergingly
used classification algorithms with the spectral separability between
benthic habitat classes in the classification scheme. The list of input
bands used for image classification can be seen in Table 3.

4.7. Accuracy assessment and correlation analysis

The classification accuracy assessment was done by confusior.atrix
(Congalton and Green, 2008). This method produces the value of overall
accuracy (OA), user's accuracy (UA) and producer’s accuracy (PA). The
evaluation of the classification accuracy did not only take the OA into
account, but also the consistency of the UA and PA of the benthic habitat
classes in the classification scheme. Pearson Product Moment correla-
tion analysis and simple linear regression analysis were used to assess
and gquantify the relationship between classification OA and spectral
separability between benthic habitat classes. Relationships are consid-
ered significant if it is able to surpass the threshold value of r (correla-
tion coefficient) at 95% confidence level at a specific number of samples
n. During the correlation and regression analysis, the spectral separa-
bility values are categorized into three categories: (1) less than 1 (5. o),
(2) between 1.0-1.9 (5; 4.1 .9), and (3) more than 1.9 (5., 4). Then, for
each classification scheme, the number of class pairs in each category of
separability were correlated to its classification OA.

5. Results
5.1. Accuracy assessment between classification schemes
Table 4 shows the hierarchical benthic habitat classification schemes

Table 4
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constructed based on the field benthic photos collected in the field using
photo-transect survey. The inter-class separability was calculated for all
benthic habitat class pairs in each of these classification schemes. It is
also clear that the number of training areas per class are not evenly
distributed, especially at higher complexity classification schemes. This
uneven training area distribution will also contribute to the classifica-
tion algorithm's performance in classifying benthic habitat. The process
of combining benthic habitat classes was done from an ecological point
of view. The benthic habitat class mentioned first is the dominant class
(=70%). The second benthic class is the less dominant (<30%). If there
is a third class, the proportion with the second class is relatively similar.
The final scenario of this study was to try to run the classification process
using a modified classification scheme using only the constructed and
non-constructed class (Level 9). The constructed class consists of benthic
habitats that have pigment content {coral reef, macroalgae, seagrass), so
its spectral response is primarily influenced by the variation of pigment
composition and concentration (Hochberg and Atkinson, 2000).
Non-constructed class consists of substrates such as sand and rubble.
This class is dominated by the spectral response of calcium carbonate.
Hence, the spectral response of the two classes is quite contrasting.
Fig. 3a shows the average and maximum OA of RF and ML in various
benthic habitat classification schemes. RF produced higher OA than ML
for each classification scheme and the difference in OA between RF and
ML widens with the increasing number of classes in the classification
scheme. Furthermore, there is a significant correlation between the
number of classes in the classification scheme and the OA from RF and
ML classification results (RF max OA, r = -0.83; RF mean OA, r = -0.77;
ML max OA, r = -0.82; ML mean OA, r = -0.82). The resulting correlation
is negative, which means that the more complex and the greater the
number of benthic habitat classes in a classification scheme, the lower
the OA produced (Fig. 3b). However, the decrease in OA in RF is not as
big as ML and shows that in the use of the same remote sensing image
and training area composition, RF is able to handle the classification
process with various classification schemes much better than ML. This
can also be used as an indicator that the machine-learning algorithm is
able to handle complex classification better than parametric classifica-
tion, especially in classification schemes with a large number of classes,
where the composition of training areas between benthic habitat classes

Hierarchical benthic habitat classification schemes created based on the field benthic photos collected in the field and the number of training areas for each benthic
habitat clas‘: — coral reef, Sg - seagrass, M — macroalgae, Sd - sand, D - dead coral, R - rubble.

No Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9
1 M/261 M/261 M/261 M/261 M/332 M/332 M/332 Sg M/561 Constructed/958
2 M C/25 M C/25 M C/109

3 MC D77 M CD/84

4 MC 54,7

5 M Sg/7 M Sg/16 M Sg/16

6 M Sg Sd/9

7 M 5d/ 21 M 5d/21 M 5d R/35 M 5d/71

B MR D/7 M R/14

9 MR/7

10 Sg5d/91 5g5d/91 Sg 5d/91 Sg 5d/110 Sg/199 Sg/199 5g/229

1 Sg/89 Sg/89 Sg/89 Sg/89

12 Sg M Sd/7 SgM/14 Sg M/14 Sg M/30 5z M/30 Sg M/30

13 SgM/7

14 Csd/21 C 5d R/31 C 5d R/31 CSdR77 C Sd R/77 C/397 C/397 C/397

15 CR/10

16 /142 /142 C/142 C/142 C/320

17 C M/46 C M/46 C M/69 CM/78

18 CMD/16 CMD/23

19 CMSd7

20 5d/128 5d/128 5d/128 5d/128 5d/128 5d/128 5d/128 5d4/128 Non-Constructed /128
21 5d M/36 5d M/36 5d M/36

22 5d R/16 Sd R/23 5d C R/46

23 5d CR/16 5d CR/23

24 RCM,7

25 R/7

26 5d 8g/19 5d 8g/19 5d 8g/19
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Fig. 3. (a) The average OA (with standard deviation) and the maximum OA of RF and ML for each classification scheme, and (b) The scatter plot between OA and the
number of classes. There is a clear difference in the OA decrease gradient between RF and ML as the number of classes increase.

is not balanced. Several works also documented the limitation of ML in
the use of non-normally distributed training samples (Su and Huang,
2009) and the superiority of machine leaming compared to the para-
metric classification algorithm in handling complex classification issues
{Zhang et al., 2013) (Wicaksono et al., 2019).

PCA-Mean produced the highest OA from Level 1 to Level 8 for ML
and from Level 1 to Level 7 for RF. For ML, at Level 9, the accuracy of
PCA-Mean is slightly lower than other inputs but still among the best
performers. In our case, this may indicate that the combination of PCA
and Mean texture analysis is effective for mapping benthic habitat at
higher complexities. For RF, the highest OA of Level 8 and Level 9
scheme was obtained from PCA-SR and VI, respectively, but similarly,
PCA-Mean produced among the highest OA with OA 0.6% lower than
the highest OA. Nevertheless, at Level 8 and 9, all input types produced
similarly high due to the very simple classification scheme. Also, in
this research, the application of water column correction did not
improve the OA of benthic habitat mapping; the resulting OA from DII in
all classification schemes are comparable and relatively similar to the
OA of de-glinted reflectance-based input types.

RF also produced more consistent OA for various image inputs
compared to ML. The various types of inputs used do not have much
impact on the OA of RF classification results, which is indicated by the
low standard deviation of the average OA produced by all inputs. The
range of standard deviation values for the average OA of RF is 0.90%
from the Level 9 scheme to 4.91% from the Level 6 scheme. When
compared to ML, different inputs produced relatively different OA,

Accuracy (%)
4

. e g N
n 18 14 a & 5 4 3 2
Mo. of benthic habitat classes

==L - UA and P'A Difference —=hL - A
b [F - UA and P an ——RF- LA

=Nl -PA
—teRF - A

Fig. 4. The average user's accuracy (UA) and producer's accuracy (PA) of all
benthic habitat classes and difference between mean UA and PA of all benthic
classes per classification scheme. These values were taken from ML and RF
classification results with the highest OA per classification scheme.

indicated by a wider standard deviation range between 5.82% (Level 2)
and 15.52% (Level 8). This also indicates that ML is more sensitive to the
selection of input bands for classification.

Fig. 4 illustrates the superiority of RF over ML based on the mean UA
and PA of the classification results with the highest OA per scheme. The
gap in the UA and PA of RF and ML in complex classification schemes is
much greater than in simpler classification schemes. Moreover, the UA
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Table 5
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Correlation analysis between inter-class spectral separability and classification OA. The values of r and R* between the number of inter-class spectral separability per
each category and OA is significant at CL 95%. NS - not significant, n - average number of class pairs belong to the category.

Maximum Likelihood

Classification scheme Spectral separability (mean, rounded to the nearest integer) OA (%)
Level Mo. of class S0 S10_19 5. 180 Maxi mum Mean
n r R n r R n r R

1 26 26 NS NS 166 -0.48 0.23 133 NS NS 35.41 22.15
2 18 3z NS NS 118 NS NS 3 NS NS 27.75 19.52
3 14 22 NS NS &6 NS NS 3 NS NS 3172 21.98
4 9 13 NS NS 23 NS NS 1 NS NS 38.03 29,66
5 ] 5 NS NS 10 NS NS o NS NS 55.87 40.66
[ 5 2 0.53 0.28 B 0.58 0.34 0 NS NS 60,00 44,53
7 4 2 0.58 0.33 4 0.58 0.33 o NS NS 63.57 50.73
B 3 1 0.62 0.39 2 0.62 0.39 o NS NS 74.86 63.42
9 2 1 0.49 0.24 1 0.49 0.24 o NS NS B3.11 74.01
Random Forest

Classification scheme Spectral separability (mean, rounded to the nearest integer) OA (%)

Level No. of class S0 Si0_19 S.190 M i mum Mean

n r R n r R n r R

1 26 26 NS NS 166 -0.58 0.33 133 0.52 0.27 BO.49 76.83
2 18 3z NS NS 118 NS NS 3 NS NS EL.06 76.86
3 14 22 NS NS 66 NS NS 3 NS NS BO.87 76.32
4 9 13 NS NS 23 0.49 0.24 1 NS NS B1.82 76.73
5 ] 5 -0.65 0.43 10 0.68 047 o NS NS BB.O07 B3.92
] 5 2 NS NS B NS NS o NS NS B9.2 B4.30
7 4 2 -0.83 0.68 4 0.83 0.68 o NS NS 90.34 B6.41
B 3 1 0.83 0.69 2 0.83 0.69 o NS NS 93.75 91.76
9 2 1 0.74 0.55 1 0.74 0.55 o NS NS 96.97 95.97

and PA difference of RF is also consistently lower than ML in all levels of
classification schemes.

5.2, Relationship between class separability and overall accuracy

Both RF and ML show the same pattern of results, where there is a
significant correlation between the number of class pairs with 5.1, S1.0-
19 and 5.1¢ with the resulting OA (Table 5). For Level 2 to Level 9
schemes, increasing the number of class pairs with 5.1 will decrease
0A, while increasing the number of class pairs with 51019 will in-
crease OA. The exception is for scheme Level 1, where the OA will begin
to increase if the number of class pairs with 5., increases and the
increasing number of class pairs with S; ., ¢ actually decreases the OA.
This shows that in complex classification schemes, high separability
values are very important to get an increase in OA. In addition, class
pairs with 5. ¢ are far more common in classes in the Level 1 scheme.
This is because the description of benthic habitat classes is more
detailed, so the number of classes with purer/homogeneous class sta-
tistics will be more numerous. Very few benthic habitat classes in the
Level 2 to Level 9 schemes produce a value of 5.1 ¢ because there is
already a class merging process from the Level 1 scheme. As a result, it is
difficult to obtain high separability between classes because some of the
classes are a combination of classes from classification schemes at the
previous level, which have low separability (class statistics are mixed).
The large number of benthic habitat class pairs with 5.1 ¢ also causes the
OA results of the Level 1 classification to be comparable to the OA
classification results of Levels 2—4, which has a much smaller number of
classes (Zhang et al., 2013). also produced better classification accuracy
with a more complex classification scheme due to the same issue.

Based on Table 5, in several classification schemes, some of the re-
lationships between inter-class separability and OA are not significant,
which is due to the limited number of samples (n for correlation anal-
ysis). However, the trends generated in the insignificant relationship are
the same, i.e., negative correlations for increasing the number of 5.1
and a positive correlation for an increase in the number of 5.4 o.1.6in the
Level 2 - Level 9 scheme. For a Level 1 scheme, a negative correlation is
also obtained for an increase in the number of 5.1 p.

5.3. Benthic habitat spatial distribution

We try to compare the spatial distribution of benthic habitat from
each classification algorithm. As a sample, we take the classification
result with the highest OA of Level 1 scheme (26 classes) as the most
complex schemes and Level 7 (4 classes) as the most used schemes
(Fig. 5). In the Level 1 classification result, it appears that the ML clas-
sification result produces very diverse class variations while RF has less
variations. Briefly, it appears that ML is able to present benthic habitat
variation better than RF even though the OA is far below RF. This is
because ML tends to overestimate in classifying mixed benthic habitat
classes, which is indicated by PA values higher than UA in 76% of total
mixed benthic habitat classes, while for non-mixed classes, such as coral
reef, seagrass, macroalgae, and sand, the UA value is higher than PA.
Meanwhile, the UA and PA values from the RF classification results are
very balanced so that there is not much overestimation or underesti-
mation in each benthic habitat class. However, the results of the RF also
tend to classify the pixels to the class with a greater number of training
areas, so the area that appears dominant are those classes, e.g., macro-
algae, sand, and coral reef. In the Level 7 classification result, the main
difference is in the area and spatial distribution of sand and coral reef in
the lagoon and back reef area of the west side of the island. The sand
class on the ML result overestimated in the back reef area while the RF
result overestimated the area and the spatial distribution of coral reef in
the lagoon area, where the sand, which is located in between the coral
reef, is generalized entirely to the coral reef class. The spatial distribu-
tion of macroalgae and seagrass in ML and RF is not much different,
except in the south east side of the island, where the spatial distribution
of macroalgae is in reef flat and reef cut is overestimated. These patterns
are important notes in utilizing the results of classification, both from
ML and RF, for subsequent uses such as in support of coastal and small
island management.

6. Discussions

Many other studies have employed quite complex classification
schemes and resulted in varying degrees of accuracy (Phinn et al., 2012)
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Maximum Likelihood, PCA-Mean OA 35.417%,

Maximum Likelihood, PCA—Mean 0OA 63.57 “‘; 3
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Sand

Seagrass

Coral reef
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Random Foresl, PCA-Mean OA B{.497

Random Forest, PCA—Mean 04 90,347
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Fig. 5. Classification of benthic habitats using ML and RF at Level 1 and Level 7. Please refer to Table 4 for a description of benthic habitat classes in the legend of

Level 1 schemes.

(Zhang et al., 2013) (Wicaksono et al., 2019) (Kutser et al., 2020). The
variations of the classification scheme are generally caused by the de-
mands of the purpose of the mapping application, image and method-
ology testing, or to represent the variation of the habitat in-sitn. To
accommodate the complexity of benthic habitat classes, previous re-
searchers applied advanced image corrections and classifications, such
as using hierarchical mapping using OBIA, from coral reefs types, reef
morphology, to major and detailed ecological class (Phinn et al., 2012).
The resulting OA reached more than 70% for the detailed classes.
Meanwhile (Wicaksono, 2016), obtained lower accuracy for detailed
mapping of benthic habitat using parametric per-pixel classification but
obtained higher accuracy when using machine learning algorithms
(Wicaksono et al., 2019). Nevertheless, quite a few researchers are still
using the conservative benthic habitat class (e.g., four class) in their
mapping activities, generally due to the mapping requirement and
limited resolutions of remote sensing data used, especially multispectral
images (Green et al., 2000) (Mohamed et al., 2018). However, research
that discusses the extent to which the ability of the spectral resolution of
remote sensing images can be used to distinguish the complexity of
benthic habitat cover and how the spectral similarities between benthic
habitat classes will affect the classification accuracy is still limited. This

is especially true regarding benthic habitat mapping, where obtaining
optimal and evenly distributed field data for many benthic habitat
classes is very challenging. In this study, we assessed the relationship of
inter-class spectral separability in different benthic habitat classification
schemes and the resulting OA in a 2 m spatial resolution W2 image.

Our results show that inter-class separability and the number of
classes affected the OA of classification results, in our case from both the
RF and ML algorithm. However, RF was able to produce more consistent
OA on different input types compared to ML. Nevertheless, the pattem of
relationship between spectral separability and OA in RF and ML is
similar. Generally, more inter-class spectral separability with 5.1
reduced the OA and more with 51019 increased the OA. This pattern,
however, did not apply for the Level 1 scheme as the most complex
classification scheme. An improvement in the OA of Level 1 scheme
requires an increased amount of inter-class spectral separability with
5-1.9. In this scheme, the possibility of obtaining class pairs with 5.1 g is
higher since the training area statistics of the classes consist of very
specific benthic composition and it is required to improve the OA. This
can be a good justification for the requirement to obtain good sample
distribution between classes when intending to map complex benthic
habitat classes.
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The issue we faced in this research is the uneven and unbalanced
distribution of training areas for each benthic habitat class (Table 4). In
Level 1 to Level 3 schemes, the difference in the number of training areas
for each benthic habitat class is quite high. This difference directly af-
fects the UA, PA, and spatial distribution of the resulting benthic habitat
class. Here, machine learning RF is far better than the types of para-
metric classification, such as ML, in terms of the capability to handle
classification with high number of classes, uneven training area between
classes and low inter-class separability, consistency of OA on various
input types, changes in the OA with increasing complexity of the clas-
sification scheme, and the consistency of UA and PA values in each
classification scheme. Our work also implicitly shows the inferiority of
parametric classification to a non-parametric classification algorithm to
map benthic habitat, which is also in line with previous works (Zhang

et al., 2013) (Wicaksono et al., 2019).
An additional finding from the results revealed that the more com-
plex classification scheme, the less accurate the classification gets,

which was also encountered by (Andrefoust et al., 2003) and (Pu et al.,
2012). One of the main @ctors affecting the OA is the classification
schemes used, which are constructed based on the ecological variation
of benthic habitats. Furthermore, there is a gap between the ecological
information of benthic habitat in the field with the spectral response
recorded by the sensor. We suggested that this gap is caused by the
resolutions of remote sensing data used, (1) the spatial resoluion —
generalizing the spectral response of benthic habitat to a certain extent
by pixel size, (2) the spectral resolution — capable of only recording the
spectral response of benthic habitat at certain wavelengths, (3) the
radiometric resolution — affects the precision of recorded spectral
response, and (4) the temporal resolution — allows for differences be-
tween the information obtained during field surveys and image acqui-
sition date. In addition, the accuracy of a particular class may
significantly change when classified at different level of scheme. This is
because, despite the same label, the statistics for the training area of the
class changed due to the class merging. These gaps were added with
several technical issues, such as the differences between image geo-
metric accuracy and GPS accuracy, and changes of image radiometric
quality during processing (Joyce et al., 2013).

Therefore, to map benthic habitats, it is necessary to check in
advance whether the purpose of the mapping can be handled by the
available remote sensing data and the classification methods to be used.
In this context, if we want to map benthic habitat in detail and with
many classes, it is recommended to use a machine-learning algorithm,
especially if the amount of training area in each benthic habitat class is
not balanced. It is also recommended to remain as optimal as possible in
obtaining an even distribution of training areas for each class. This can
be prepared from the beginning before the field survey through the se-
lection of transect locations by considering the factors that really affect
the variation of benthic habitat in the field.

7. Conclusions

This study has demonstrated that inter-class separability of benthic
habitat classes in a classification scheme has an influence on the OA of
the classification results and the impact is stronger on parametric clas-
sification, such as ML, than on non-parametric machine-learning clas-
sification such as RF. RF is able to handle classification with high
number of classes, uneven training area distribution between classes and
low separability using any input bands. This has been proven in many
details of benthic habitat classification schemes. In general, an increase
in the number of class pairs with S_ 3 will decrease the OA and an in-
crease in the number of class pairs with S.; .1 4 will increase the OA.
Especially for scheme Level 1, with the greatest number of classes, to
increase the OA, it is necessary to increase the number of class pairs with
5-19. This implies that the use of detailed classification schemes re-
quires a high degree of inter-class spectral separability to get increased
OA. Therefore, while obtaining high OA is still possible with low
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spectral-separability class pairs, it is still necessary to ensure that the
training area for each class should be able to produce high spectral
separability as it indeed improved the OA, UA, and PA of the classifi-
cation result, especially with a complex classification scheme.
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