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Abstract — In this study, we optimized a convolutional 

neural network model i.e. AlexNet to classify images of cervical 

cancer cells. Although having canonical CNN architecture, 

AlexNet is only equipped with few hidden layers and thus makes 

it less efficient for complex objects such as cervical images. To 

overcome this limitation, we optimized AlexNet using a swarm-

based approach (particle swarm optimization). The dataset used 

is the Intel & MobileODT Cervical Cancer Screening dataset. 

Firstly, we optimize standard AlexNet based on epoch, data 

subsets during training (minibatch), learning rate, input image 

resolution, and training-testing ratio. After having the best 

parameter values, we derive 3 models of AlexNet based on the 

number of convolutional layers. Using this approach, AlexNet 

with a double convolutional layer produces 60.14%, almost as 

good as the standard residual network on cervical images. 

However, when AlexNet optimized by swarm-based intelligence 

(particle swarm optimization) and an additional dropout layer, 

the accuracy can attain about 67% which is can surpass the 

standard residual network by 6.22%.  

Keywords—AlexNet, particle swarm optimization, medical 

image processing, cancer classification 

I. INTRODUCTION  

Cervical cancer is one of the most common types of 
cancer. Every year, about half a million women worldwide are 
diagnosed positive for cervical cancer with a mortality rate of 
more than 300,000 [1]. The high level of prevalence of the 
incidence rate certainly requires the attention of both the 
rulers, private sectors, and the communities in efforts to 
prevent, treat and control cervical cancer. Cervical cancer 
stems from irregular cell growth and these cells can attack 
other biological organs either by direct growth in adjacent 
tissues or by migration to other cells (metastasis). Irregular 
growth can cause DNA damage, resulting in mutations in vital 
genes that control cell division, and other organs. If it is 
severe, cell growth will become a malignant tumour that 
attacks the tissue in the cervix. The main cause of cervical 
cancer is Human Papilloma Virus infection, although several 
other factors can also affect cancer progression. 

Generally, cervical cancer tests can be done with a pap 
test, HPV examination, and IVA tests which are supported by 
imaging tests / medical images such as CT scans, microscopy, 
and MRI. However, another potential way of screening is to 
utilize state-of-the-art computer vision technologies. Recent 
approaches use neural networks that can learn cell features 
automatically. This model is known as a convolutional neural 
network (CNN). CNN can be trained to perform automatic 
segmentation of cancer cells or detect cancer potential based 
on medical images taken from patients [2], [3]. However, this 

CNN technology still requires further research so that it can 
be developed into a tool for pathology specialists in 
diagnosing cervical cancer based on patient medical images. 
Moreover, the performance should be higher than standard 
human experts or doctors.     

In academia, convolutional neural networks (CNNs) has 
been used to detect the potential of cancer from medical 
images. A study conducted by [4] showed how a CNN can 
detect mitosis in cancer cells based on histological images. 
More in-depth studies regarding the classification of cancer 
have been carried out by [5]. In addition, [6] has succeeded in 
using a modified LeNet model with a variety of layers and 
parameters to reduce the memory and computational load. 

CNN can also be used for cervical cancer segmentation 
without having to do classification [7]. More interestingly, the 
study conducted by [8] was able to combine the method of 
segmentation and classification of cancer in one diagnostic 
framework. In addition, CNN variants such as GoogLeNet and 
AlexNet have also been utilized for breast cancer 
classification on histopathological images taken from biopsy 
samples without involving any segmentation process [9].     

Fig. 1 provides a visual illustration of the appearance of 
cervical cancer cells that appear no more difficult to classify 
than breast cancer cells. The following is a comparison of 
breast cancer pictures and cervical cancer pictures.  

For breast cancer images, AlexNet was found to have 
relatively high accuracy i.e. 80% [9]. However, its efficacy on 
cervical cancer remains unknown. Meanwhile, in a study 
conducted by [10], the accuracy produced by their proposed 
CNN deep residual network method did not exceed 60%. 
Therefore it is necessary to research whether such a CNN 
model can attain higher accuracy. In this study, we are 
interested to examine how good AlexNet for classifying 

 

Fig. 1  Image of (left) breast cancer cells [9], (right) cervical cancer cells [10]. 



cervical images. We also have tried to optimize its 
performance using swarm-based intelligence i.e. particle 
swarm optimization.  

II. METHODS 

A. AlexNet's Convolutional Neural Network Architecture 

As described previously, AlexNet has the advantage of 
having only several hidden layers and thus require relatively 
less computational time for training. Here, AlexNet receives 
an image as input then processes it through several layers (also 
called blocks): a convolution layer, a ReLu layer, a pooling 
layer, and finally a fully-connected layer which classifies 
cervical input images into 3 types of cancer that based on the 
softmax activation function. 

1) Input patch 
Examples of cervical cancer images (type 1, type 2, and 

type 3) can be seen in Fig. 2. 

2) Blocks 
Each CNN block consists of 3 sub-layers, namely the 

convolution layer, ReLU, and pooling. 

• The convolutional layer accepts a cervical image as 
input. This layer consists of a collection of filters that are 
randomly initialized to look for a feature representation 
of an image based on the disease type category. The 
values of the filters are regarded as the network weights 
that will be optimized during the training phase. Each 
filter represents a receptive field that will detect features 
from the simplest such as edges, curves to more 
complicated features such as cell parts. The output from 
this layer is a filtered image.  

• The ReLU layer determines whether pixels of the filtered 
image should be transmitted to the next layer or not. The 
form of the ReLU function can be expressed by f (x) = 
max (0, x), which means that it will cut off pixel values 
less than 0. 

• Then, the pooling layer decreases the size of the image to 
enable the subsequent blocks to find more features in the 
lower resolution scale.  

3) Fully-connected layers 
The full connection layer is similar to the standard 

network’s hidden layer consisting of perceptron that 
responsible classify the previously processed image. We used 
the standard number of perceptron i.e. 4096. Lastly, for the 
output layer, there are only 3 perceptrons that are associated 
with the number of cervical types.  

In this study, we experiment with three different AlexNet 
architectures as shown in Fig. 3. These models are derived by 
varying the number of convolutional layers in each block. 
AlexNet 1 model has only single convolutional layers while 

AlexNet 2 and AlexNet 3 models have double and triple 
convolutional layers respectively.  

B. Dataset and Experimental Setup 

The dataset used is a standard dataset, namely Intel &   
MobileODT Cervical Cancer Screening [11]. This dataset 
contains a total of 1481 images which consist of three label 
types of cervical cancer as follows:  

• Type 1 (consists of 250 images) 
• Type 2 (consisting of 781 images) 
• Type 3 (consists of 450 images) 

Patients with type 1 cervix only need standard screening. 
Patients with type 2 and type 3 cervix require an advanced 
screening process [2]. 

Because this set has an unbalanced number of images 
between classes or types of cervical cancer, we also created a 
balanced and smaller version of the dataset based on the image 
size of the lowest cancer type, which is 250 images. So that 
the total images for 3 types of cervical cancer become 750 
images, 70% of which are used as training data, and the 
remaining 30% are used as testing data. Originally, the images 
have resolutions ranging from 480 x 640 to as large as 3096 x 
4128.  To reduce the computational burden during the training 
phase, we reduce the image size to 3 resolutions. By default, 
the experiments use the following training parameters: 

• The initial learning rate is 0.0001 
• The learning rate drop factor is 0.1 
• The L2 Regularization is 0.004 
• The minibatch size is 10 

The experiments are divided into two main sections. In the 
first experiment, we manually experiment with the parameters 
from the epoch, minibatch, and learning rate. Then, we 
experiment with the training-testing ratio, dataset size, and 
AlexNet’s architectures. For the second experiment, we use 
PSO to optimize these parameters.  

   
Fig. 2  Training image samples for (a) Type 1, (b) Type 2, and (c) Type 3. 

          

Fig. 3   The architecture of the 3 AlexNet models based on the variation 
in the number of convolutional layers in each block (left) AlexNet 1 
(middle) AlexNet 2 (right) AlexNet 3. 



Detail of the first experiment is given as follow. We 
experiment with AlexNet's sensitivity for the epoch 
parameter, we set the learning rate to 0.0001 and the mini-
batch size to 10. The values of epoch ranging as: 10, 20, 30, 
40, 50, 60, 70, 80, 90, 100, 150, 200, and 300. Next, we hold 
the most optimal epoch value then test other parameters such 
as minibatch and learning rate. Next, the values of minibatch 
and learning rate have jointly experimented with the range of 
(10, 20, 30, 40) and (0.0001, 0.001, 0.01).  

Then, we hold the most optimal values of the epoch, 
minibatch, and learning rate and continue to the next 
experiment. Here, we compare the influence of the ratio 
between data training and testing and the effect of the 
trimmed dataset against the original dataset. Finally, after 
obtaining the best combination of parameters, tests are 
carried out on the 3 AlexNet models.        

After finding the best model, we continue with the swarm-
based experiment. More specifically we design two schemes: 
(1) the optimization of epoch and minibatch, (2) the 
optimization of the epoch, minibatch, and additionally 
parameter i.e. dropout percentage. 

 The experiments of AlexNet and PSO used the following 
parameters: 

• Population = 5 
• Maximum iteration = 10 
• The maximum epoch is 15 and the minimum is 1. 
• The maximum minibatch is 40 and the minimum is 10. 
• The maximum dropout percentage is 100 and the 

minimum is 0. 
• The maximum velocity is 5 and the minimum is -5 

The value of the learning rate for both cognitive and social 
acceleration for updating global best and previous best scores 
is set as 1.4. 

C.  Particle Swarm Optimization 

To overcome the trial-and-error process that is difficult to 
do experimentally, the PSO optimization approach is 
promising. The PSO model is inspired by the swarm 
behaviour of individuals such as birds and fishes (called 
particles) which shows a form of intelligence in the social 
colony (community). The simplification of how birds can 
coexist with physical movements to find food, mate, and 
avoid predators has served as an optimization model. In the 
D-dimensional parameter search space, the position of the 
particles can be denoted as xi = (xi1, xi2, ..., xiD). Each particle 
changes its position towards the optimal solution, through the 
search space, directed by the position of the best particle. 

Each particle is modelled with three components, namely 
momentum, cognitive and social components (Kennedy & 
Eberhart, 1995). The momentum component is based on the 
previous velocity. The cognitive component is based on the 
experience of each particle, represented by the position of the 
best member pi. The social component is based on the whole 
swarm experience, represented by the best position pbest of 
the previous member. The best velocity and position that the 
particles have visited can be represented as vi = (vi1, vi2, ..., viD) 
and pi = (pi1, pi2, ..., piD) respectively. 

Then, the position of the next particle can be updated 
heuristically based on the rules of successive motion as given 
in (1).  

                                      xi +1 = xi + vi +1                                                            (1) 
The particle velocity vi+1 is a combination of the 

momentum, cognitive and social components as shown in (2). 

vi +1 = 0.5⋅vi + a1⋅rand1()⋅(pi − xi) + a2⋅rand2()⋅(pbest − xi) (2) 
The variables a1 and a2 are the learning rates of cognitive 

and social acceleration. The variables rand1, rand2 are random 
numbers between 0 and 1 with a uniform distribution. The 
variable velocity of vi can also be limited to a limit between [-
vmax, vmax] while the value of vmax can be determined by the 
number 2 [12][13]. The pseudocode is given in the following. 

D. Performance Evaluation 

To measure the performance of the network models, we 
use the accuracy metric derived from the confusion matrix as 
given in Table I. 

TABLE I.  CONFUSION MATRIX 

The accuracy value can be obtained by comparing the 
number of correct prediction results against the three types. 
The total true positive can be calculated using (1).  
                                  ������ = � ���

�

���
                                    (1)  

    The variable ��� is the total true of Type 1, �   is the total 
true of Type 2, and ��� is the total true of Type 3. The overall 
accuracy A can be calculated using (2).  

                                            ! = ""#$%%
&��                                       (2)    

 

All is the total value of all elements in the confusion 
matrix. In addition to accuracy, we utilize CPU time to 
measure the length of the training process. Normally, the 
optimization process (the use of PSO) will extend the training 
time. The experiments were carried out using the following 

Cancer 

Severity 

Prediction 

Type 1 Type 2 Type 3 

Type 1 x11 x12 x13 

Type 2 x21 x22 x23 

Type 3 x31 x32 x33 

 

Initialize the population 
Do  

For each particle i = 1 to the Nth member 
if f(xi) > f (pi) then pi = xi 

if f(pi) > f (pbest) then pbest = pi 
For d = 1 to the D-dimension 

vid = vid + a1·rand()·(pid - xid) + a2·rand ()·(pbest - xid)  

vi = maks (vmin, min (vmax, vid)) 

xid = xid + vid  

next d 
next i 

Until the termination criteria are met 



specifications. We used Intel (R) Core (TM) i7-6700HQ CPU 
@ 2.60GHz, 12GB RAM, 1TB HDD, Nvidia GeForce GTX 
950 GPU. As for software, we use Matlab 2020b working on 
Windows 10 Pro 64Bit.  

III. RESULTS AND DISCUSSION 

A. Manually Search Parameter Experiments 

Table II shows the results of AlexNet's sensitivity based 
on the epoch parameter. At epoch 10, the accuracy on AlexNet 
was only 44.38%. During the training process, the progress 
succeeded in increasing accuracy, but the validation results 
were not as high as the training results. At epoch 20, the 
accuracy of AlexNet was increased to 46.10% and at epoch 30 
the accuracy was 47.24%. 

TABLE II.  EXPERIMENTS OF EPOCH 

The increase in epoch from 30 to 40 does not seem to 
affect accuracy (it only increased by 0.19%). Likewise, on 
epoch 50, accuracy only increased by 0.29%. This can be due 
to the random number generator factor in the process of 
initiating the weights of the AlexNet model. The combination 
of the initial weight values generated can make the model 
trapped in stagnant accuracy where the gradient value search 
process cannot find a new combination of weight values that 
can produce better accuracy. 

Epoch 60 managed to increase the accuracy to 48.19%. 
However, in the next experiment (epoch 70) the accuracy 
improvement was not significant. Interestingly, epoch 80 
managed to increase the accuracy to 49.71. The next 
experiment was carried out on epoch 90 which neither 
increase nor decrease the accuracy. The next experiment was 
carried out at epoch 100, the accuracy decreased to 49.52%. 
To see the effect of the epoch parameter further, the number 
of iterations was added to 150 and the result shows that the 
accuracy goes up to 49.90%. However, when the epoch is 
added to 200, it returns an accuracy similar to epoch 90.  

This shows that a higher epoch does not guarantee the 
effectiveness of AlexNet. To ascertain the effect of the epoch 
parameter, we experimented with a value of 300. The result 

was that the accuracy could reach 52.19%. The time needed to 
achieve this accuracy is 16 minutes and 16 seconds. For lower 
epoch e.g. 10, it only requires training time at 41 seconds 
while the time needed for epoch 80 is 4 minutes 25 seconds.  

In general, the increase in epoch has a positive effect as the 
trend of increasing accuracy. However, between 100 to 200 
epochs, accuracy seems to fluctuate so that it has a positive 
effect on AlexNet's performance. In addition, adding epochs 
over 300 will further tax the computation time required by the 
AlexNet model.   

Table III shows experiments for minibatch parameters and 
learning rate. In the minibatch parameter, we tested it with 
values of 10, 20, 30, and 40. The epoch parameter used is 150 
because based on previous experiments this value shows that 
the AlexNet model has become stable. 

The minibatch 10 (learning rate 0.0001) gives the best 
accuracy and CPU time results i.e. 49.90% and 486 
seconds. Surprisingly, the increase in the value of minibatch 

by 20 and 30 reduces the accuracy with almost the same total 
time required. However, for minibatch 40, the accuracy rate 
increases again to 46.29% but requires an additional time of 
66 seconds. This shows that the minibatch parameter does not 
have a significant effect on the performance of the CNN 
AlexNet model. In other words, minibatch 10 is good enough 
for training. 

TABLE III.  EXPERIMENTS OF MINIBATCH AND LEARNING RATE 

For the learning rate parameter, we used the values 
0.0001, 0.001, and 0.01. Theoretically, a higher learning 

rate value means the greater the fluctuation in 
the weight training process of the network model. Therefore, 
we only limit the value to 0.01. The best accuracy value is 
given at a learning rate of 0.0001 i.e. 49.90% with a 
computation time of 486 seconds and the minibatch value at 
10. However, this value also does not have a big effect 
because it only ranges between 45.90% and 49.90%.  

TABLE IV.  EXPERIMENTS OF IMAGE RESOLUTION 

We have also examined the effect of image resolution 
on cervical cancer cell input. Table IV describes the effect of 
resolution parameters on the accuracy and computation time 
required by the CPU. The other parameters are obtained from 
previous best experiments: learning rate of 0.0001, minibatch 

No Minibatch 
learning 

rate 

Accuracy 

(%) 

CPU time 

(seconds) 

1 10 0.0001 49.90 486 

2 20 0.0001 46.29 484 

3 30 0.0001 37.33 444 

4 40 0.0001 46.29 552 

5 10 0.001 47.81 616 

6 10 0.01 45.90 691 

 

No Epoch 
Accuracy 

(%) 

CPU time 

(seconds) 

1 10 44.38 41 

2 20 46.10 74 

3 30 47.24 105 

4 40 47.43 139 

5 50 47.72 113 

6 60 48.19 202 

7 70 48.57 231 

8 80 49.71 265 

9 90 49.71 346 

10 100 49.52 327 

11 150 49.90 486 

12 200 49.71 647 

13 300 52.19 976 

 

No Resolution 
Accuracy 

(%) 

CPU time 

(seconds) 

1 32 x 32 49.90 486 

2 64 x 64 46.10 2621 

3 128 x 128 34.67 7382 

 



of 10, and epoch of 150. Surprisingly, this shows that the 
larger the image size makes the AlexNet model becomes less 
effective. The computational time at 128 x 128-pixel required 
7382 seconds (123 minutes 2 seconds). When compared with 
the computation time for the input image resolution of 32 x 
32, the required CPU time only 486 seconds. 

TABLE V.  EXPERIMENTS OF DATA TRAINING AND TESTING RATIO  

Table V shows the performance based on the ratio of 
the training and testing data used.  We set various of the 
training data into 70%, 80%, and 90% and the testing data 
becomes 30%, 20%, and 10% respectively.  

Similar to the previous experiment, we used the best 
previous values i.e. epoch parameters used are 150, 
the minibatch is 10, the learning rate is 0.0001, and the input 
image resolution is 32 x 32 pixels. The trimmed dataset is a 
dataset in which the amount of data in each type has been set 
to the smallest cancer type category i.e. 250 images. The best 
accuracy was 58.11% at the training and testing ratio 0.9: 0.1. 
We also compared it when the ratio used was 50:50 by [10] 
and it was found that the accuracy was only 50.41%.  

After obtaining the optimal value of training and testing 
data ratios (i.e. 0.9: 0.1), we tested the three AlexNet models. 
From this test, we wanted to see how the number of 
convolutional layers on each block affects the accuracy and 
the computational time. Due to architectural complexity, we 
used fewer epochs i.e. 15 to compare it to the standard 
residual network model [10] which has a more complex 
architecture (i.e., has 32 layers in total). 

Table VI shows the performance of the three models. 
From the experimental results, it was found that the AlexNet 
2 was able to achieve an accuracy of 60.14%, which is 
slightly lower (0.86%) compared to the residual network 
model which has 32 layers [10]. Interestingly, the AlexNet 3 
model which has a total of 21 layers (3 convolution layers for 
each 

block) yields the lowest accuracy. This can be due to the 
insufficient number of training datasets (1481 images) to 
update the weights on a complex network layer. So that the 
training results were ineffective. The computation time of the 
three models is not far apart. 

From the experiments that have been carried out, it can be 
concluded that the best performance of the AlexNet model 
was given by the AlexNet 2 model (having a total of 18 layers) 
with 158 seconds for the training time. This model uses epoch 
15 parameters, 10 minibatch, 0.0001 learning rate, 32 x 32-
pixel input image resolution, and the training and testing ratio 
is 0.9: 0.1. When compared with research [10], their CNN is 
the neural network residual model consisting of 32 layers. 
Even though there are many layers, the accuracy was only 
60%. This shows that AlexNet2 was slightly better than the 
neural network residual model.   

B. Swarm-Based AlexNet Optimization Experiments 

In this experiment, we optimize the AlexNet using particle 
swarm optimization (PSO). The letter D represents for 
dropout parameter while X represents the AlexNet model. The 
dropout layer is added before the fully connected layer.  

Table VII  shows that without PSO, the AlexNet 1 model 
was only attained an accuracy of 51.35% while AlexNet 2 and 
AlexNet 3 produce 60.14% and 47.97% respectively. 
However, after optimization with PSO, the AlexNet 1 network 
accuracy results increased significantly by 7.43% to 58.78%. 
By adding the dropout layer into this model, the accuracy 
attains 59.46%. The dropout parameter functions as a 
regulator which plays a role in helping the network avoid 
overfitting in the training process. This is in contrast to 
AlexNet 2 i.e. the PSO-D-AlexNet 2 model produces accuracy 
0.68% lower than the AlexNet 2 model.  

The dropout parameter which functions as a regulator 
which plays a role in helping the network avoid overfitting in 
the training process was also able to increase the accuracy 
even higher, namely to 59.56%. This is slightly different from 
the AlexNet 2 model because the PSO-D-AlexNet 2 model 
gives similar results (0.68% lower than the AlexNet 2 model). 
However, the PSO-D-AlexNet 3 model is successful in 
implementing PSO and dropout parameters. gives the best 
accuracy results i.e. 66.22%.   

From the whole experiment, several things can be 
concluded. The PSO-D-AlexNet 3 model was more accurate 
than the residual network model [10] which has almost a 
double layer. The PSO-D-AlexNet 3 model has fewer layers 
i.e. 22 layers (the AlexNet 3 model consists of 21 layers plus 
1 dropout layer). Even though there are many layers, the 
result of the residual network model accuracy was only 60%, 
which is 6.22% lower than the PSO-D-AlexNet 3 model 

No Training-testing Dataset 
Accuracy 

(%) 

CPU time 

(seconds) 

1  0.5:0.5 a [10] trimmed 45.60 642 

2  0.7:0.3 trimmed 49.33 593 

3  0.8:0.2 trimmed 50.00 615 

4  0.9:0.1 trimmed 50.67 643 

5  0.5:0.5 a [10] original 50.41 1316 

7  0.7:0.3 original 53.38 1184 

8  0.8:0.2 original 56.42 1248 

9  0.9:0.1 original 58.11 1637 

 

TABLE VI.    COMPARISON OF ALEXNET AGAINST RESIDUAL NETWORK MODEL 

No Model Layers Accuracy (%) CPU time (seconds) 

1 Residual Network [10] 32 60.00 - 

2 AlexNet 1 15 51.35 145 

3 AlexNet 2 18 60.14 158 

4 AlexNet 3 21 47.97 178 

 



(66.22%). However, this performance is still below the 
standard of the screening process. This means that the level 
of accuracy of the cervical cancer classification domain based 
on deep learning still requires further improvement. 

 

IV. CONCLUSION 

We have evaluated optimized AlexNet using the particle 
swarm optimization method that has been tested on the Intel 
& MobileODT Cervical Cancer Screening dataset. For the 
results without PSO optimization, the AlexNet 2 model 
produces the best accuracy, which is 60.14%, which is slightly 
better than the standard residual network model. However, by 
utilizing PSO and adding a dropout layer, the AlexNet 3 model 
succeeded in surpassing the residual network model by 6.22%, 
reaching an accuracy of 66.22%. This model uses epoch 15 
parameters, 10 minibatch, 0.0001 learning rate, 32 x 32-pixel 
input image resolution, and the training and testing ratio is 0.9: 
0.1. This shows that AlexNet can classify images of cervical 
cancer cells better than the standard residual network model. 
In the future, the performance of the AlexNet model still needs 
to be improved to be truly applicable in the real health sector. 
We could also experiment with the others parameters such as 
weight and learning algorithms or even synthesis augmented 
dataset. 
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TABLE VII.    COMPARISON OF OPTIMIZED ALEXNET AGAINST RESIDUAL NETWORK MODEL 

No Model 
Optimum Values Accuracy 

(%) 

CPU time 

(seconds) epoch minibatch dropout 

1 AlexNet 1  
a epoch = 15 

         minibatch = 10 

51.35 145 

2 AlexNet 2  60.14 158 

3 AlexNet 3  47.97 178 

4 Residual Network [10] ~15 - 0.4 60.00 - 

5 PSO-AlexNet 1 15 25 - 58.78 5931 

6 PSO-D-AlexNet 1 11 12 0.65 59.46 4169 

7 PSO-D-AlexNet 2 8 26 0.94 59.46 4333 

8 PSO-D-AlexNet 3 13 31 0.65 66.22 5673 

a.
 These values are determined manually from the experiments and chosen to be small due to the computational complexity effect from the PSO. 

 


