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5  References and Appendices

5.1  Appendix 1

This appendix contains proofs of the lemmas from Chapter 2.

Lemma 1:

The optimal capacity choice, yI*, for a central decision-maker is given by,
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Proof:

The total channel profit as a function of yI, Π(yI) is given by,
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The retail price is restricted to r>pM+pS+cM+cS.  The salvage values are also strictly less than

the capacity costs.  Therefore mI-vI>0.  The density function is non-negative, therefore,
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and Π(yI) is a concave function of yI.  Therefore, the first order condition is sufficient for yI* to be

the profit maximizing capacity.  So,
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Lemma 2:

For a given wholesale price, w, the optimal capacity choice, yM(w), for the manufacturer,

assuming the supplier has infinite capacity, is given by,
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Proof:

As for Lemma 1 above, but replacing capacity, salvage and unit margin parameters as

appropriate.

Lemma 3:

For a given wholesale price, w, the optimal capacity choice, yS(w), for the supplier, assuming

the manufacturer has infinite capacity, is given by,
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Proof:

As for Lemma 1 above, but replacing capacity, salvage and unit margin parameters as

appropriate.

Lemma 4:

(i) yM(w) is strictly decreasing in w

(ii) yS(w) is strictly increasing in w

(Note that FX(x) is assumed to be continuous and differentiable)

Proof:
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Lemma 5:

(i) There is a unique wholesale price, w, such that yM(w)=yS(w)

(ii) This unique wholesale price, wcrit, is given by,
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(iii) At this wholesale price, wcrit, yM(wcrit)=yS(wcrit)=yI*

(iv) If w=wcrit, then the total channel profits equals the channel profits obtained by a central

decision-maker.

Proof:

(i) and (ii)From Lemma 4, yM(w) is strictly decreasing in w and yS(w) is strictly increasing in w.

Therefore yM(w) and yS(w) can cross each other at most once.
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So, yM(w)=yS(w) iff,
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(iii) yI*=yS(w) iff,
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mI=r-pM-pS, cI=cM+cS, vI=vM+vS and So, yI*=yS(w) iff,
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which is the same condition for yM(w)=yS(w) so at wcrit, yM(wcrit)=yS(wcrit)=yI*

(iv) The total channel profits depend only on the supplier and manufacturer capacity.  Since,

yM(wcrit)=yS(wcrit)=yI*, the capacities are the same as those chosen by a central decision-maker and

therefore the total channel profits are the same.
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Lemma 6:

The necessary and sufficient condition on the demand distribution, FX(x), for yS(w) to be a

concave function of w is given by,
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For strict concavity, the inequality needs to be strict.  This condition is referred to as the

(strict) concavity condition in the rest of the proofs.  Note that this condition is equivalent to

requiring that g’(x)≥0 ∀ x, where,
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The first bracketed term is > 0.  Now, because vS<cS , i.e. the salvage value is strictly less than

capacity cost,
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the third bracketed term needs to be ≤ 0, and for strict concavity this term needs to be < 0.  Indeed

this condition is sufficient.  So, the necessary and sufficient condition for yS(w) to be a concave

function of w is then given by,
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Since yS(w) is strictly increasing in w and since for every x∈[a,b] there is wholesale price w such

that yS(w)=x, then this condition is satisfied iff
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Lemma 7:

(i) If FX(x) is an increasing failure rate distribution (IFR), then,
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Proof:

(i)The failure rate function, h(x), for a distribution FX(x), is defined as,
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(ii) Follows directly from part (i) and Lemma 6 above

Lemma 8:

In Game A, where the wholesale price is exogenous and the manufacturer is the Stackleberg

leader, the manufacturer and supplier choose their capacities such that

yM*=yS*=min{yS(w),yM(w)}, where yM(w) and yS(w) are given by Lemma 2 and Lemma 3

respectively.

Proof:

The supplier never chooses a capacity larger than the manufacturer’s capacity choice, as its

total sales are limited by the manufacturer’s capacity.  From Lemma 3, the supplier’s profit,
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ΠS(y), is concave with the maximum achieved at yS(w).  For y<yS(w), ΠS(y) is increasing in y.

Therefore, if the manufacturer announces a capacity of y, the supplier chooses a capacity of

min{y,yS(w)}.  Likewise, the manufacturer never announces a capacity larger than the supplier

would choose, as its total sales are limited by the supplier’s capacity choice.  From Lemma 2, the

manufacturer’s profit, ΠM(y), is concave with the maximum achieved at yM(w).  For y<yM(w),

ΠM(y) is increasing in y.  Therefore, the manufacturer chooses its capacity,

yM*=min{ yS(w),yM(w)}.  The supplier chooses a capacity of min{ yM*,yS(w)}=min{ yS(w),yM(w)}.

Lemma 9:

In Game B, where the manufacturer chooses the wholesale price, the manufacturer never

chooses a wholesale price, w, such that w>wcrit.

Proof:

Let the manufacturer choose a wholesale price, w*>wcrit.  The channel capacity is then given

by min{yS(w*),yM(w*)}.  For w>wcrit, yS(w)>yM(w), so the channel capacity is yM(w*).  However,

there exists a w**< wcrit such that yS(w**)= yM(w*).  [For every x∈[a,b] there is a wholesale price

wS such that that yS(wS)=x.  Likewise there is a unique wholesale price wM such that yM(wM)=x.

yS(w) is strictly increasing in w, yM(w) is strictly decreasing in w and there is a unique wholesale

price wcrit for which yS(wcrit)=yM(wcrit).]

The manufacturer’s expected total sales depend only on the channel capacity.  Thus the

manufacturer’s expected sales revenue is the same for w* and w**, as is the manufacturer’s

capacity cost and expected salvage revenue.  The cost per unit sold is strictly less if w** is

chosen.  Therefore the manufacturer’s profit is strictly greater at w** and so the manufacturer

never chooses a w>wcrit.

Therefore, the manufacturer’s wholesale price choice can be restricted to w≤wcrit.  For the

supplier to invest in capacity, the wholesale price, w, must be larger than the sum of unit capacity

cost and unit marginal cost (w≥pS+cS).  So the manufacturer’s optimal wholesale price falls within

pS+cS<w≤wcrit.

Lemma 10:

If FX(x) satisfies the concavity condition, then the manufacturer’s profit, ΠM(w), restricted to

pS+cS<w≤wcrit, is a strictly concave function.
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Proof:

In this range the manufacturer’s profit, ΠM(w), is given by,
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(i) From Lemma 4(ii),  0 
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(iii) r>w+pM+cM in the allowable range for w,

(iv) cM>vM

(v) In the specified range for w,
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Lemma 11:

If FX(x) satisfies the concavity condition (eqn. (2)) given in Lemma 6, then the optimal w for

Game B is given by the first order condition,
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and the optimal w is strictly greater than pS+cS and strictly less than wcrit.

Proof:

From Lemma 9, the manufacturer’s optimal wholesale price lies within pS+cS<w*≤wcrit.  From

Lemma 10, ΠM(w) is a strictly concave function so the first order condition is sufficient for

optimality as long as the wholesale price, w*, that satisfies the condition, lies in the interior of the

range, pS+cS<w≤wcrit.  I will show that the optimal wholesale price satisfies pS+cS<w*<wcrit.

If w≤pS+cS, then the supplier does not invest in any capacity and the manufacturer’s profit is

be zero.  At wcrit the manufacturer’s profit is strictly positive.  ΠM(w) is a strictly concave function

in the range pS+cS≤w≤wcrit, so we must have
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ΠM(w) is concave function.  From (L11.2) the profit is decreasing at w=wcrit, so the first order

condition must be satisfied for w<wcrit.  From (L11.1) the profit is increasing at w=pS+cS.

Therefore, the w* that satisfies the first order condition must satisfy pS+cS<w*<wcrit.
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Lemma 12:

If FX(x) satisfies the concavity condition, then in Game B, the total channel profits, ΠD, is

strictly less than the total channel profits obtained by a central decision-maker, ΠC.

Proof:

Πd=Πc only if the channel capacity chosen is the same as that chosen by a central decision-

maker.  This only happens if the manufacturer chooses the wholesale price, w, such that w=wcrit.

From Lemma 11, this never occurs.  Therefore, the total channel profits is strictly less than those

obtained by a central decision-maker.

Lemma 13:

For any allowable price schedule (w,∆), pS+cS≤w+∆≤r-cM-pM and ∆≥0, then (i) the optimal

capacity choice, yS(w,∆), for the supplier, assuming the manufacturer has infinite capacity, is

given by,
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and (ii) the optimal capacity choice, yM(w,∆), for the manufacturer, assuming the supplier has

infinite capacity, is given by,
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Proof:

(i) Let ΠS(y,w,∆) denote the supplier’s profit as a function of y for a price schedule of (w,∆).If

∆=0, then the supplier invests in capacity, yS(w).  However, ∆>0, so when determining the

optimal capacity, yS(w,∆), we only need to look at y≥yS(w).  In this range,
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Taking the first derivative with respect to y, )()( 
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So, ΠS(y,w,∆) is a concave function of y and the first order condition is sufficient for optimality.

Thus,
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(ii) Proof follows similarly to (i) but the quantity premium, ∆, is subtracted from the unit margin.

Important Note for Proofs of Lemmas 14, 15 and 16:

(i) yS(w,∆)=yS(w’) and yM(w,∆)=yM(w’) where w’=w+∆.

(ii) The first and second derivatives of yS(w,∆) with respect to either w or ∆ is the same as the

derivatives of yS(w’) with respect to w’.

(iii) The first and second derivatives of yM(w,∆) with respect to either w or ∆ is the same as the

derivatives of yM(w’) with respect to w’.

Given (i),(ii) and (iii), Lemmas 14, 15 and 16 follow directly from the proofs of Lemmas 4, 5 and

6.  Fully worked proofs, independent of Lemmas 4, 5 and 6 are available.

Lemma 14:

(i) yM(w,∆) is strictly decreasing in both w and ∆.

(ii) yS(w,∆) is strictly increasing in both w and ∆.

(Note that FX(x) is assumed to be continuous and differentiable)

Proof:

Follows from Lemma 4 and above note.
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Lemma 15:

For a given wholesale price w≤wcrit there is a unique quantity premium ∆crit, given by
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such that yM(w,∆crit)=yS(w,∆crit)=yI*.

Proof:

Follows from Lemma 5 and above note.

Lemma 16:

(i) yS(w,∆) is a concave function of both w and ∆ iff the concavity condition given by equation (2)

holds for FX(x).

(ii) If FX(x) is an IFR distribution then equation (2) is satisfied so yS(w,∆) is a strictly concave

function of both ∆ and w.

Proof:

(i) From Lemma 6 0
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(ii) Follows directly from Lemma 7.

Lemma 17:

For Game C the manufacturer never chooses a quantity premium, ∆, such that ∆>∆crit.

Proof:

Similar to proof of Lemma 9 but adapting for ∆ instead of w.  Therefore, the manufacturer’s

wholesale price choice can be restricted to 0≤∆≤∆crit.
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Lemma 18:

For Game C, if FX(x) satisfies the concavity condition given by equation (2), then the

manufacturer’s profit, ΠM(w,∆), restricted to 0≤∆≤∆crit, is a strictly concave function of ∆.

Proof:

The manufacturer’s profit, ΠM(w,∆), is given by,
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Taking the derivative with respect to ∆,
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Taking the second derivative,
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Now,

(i) From Lemma 14(ii),  0 
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(ii) As FX(x) satisfies concavity, then from Lemma 16(i),    0
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≤
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∆
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wyd S

(iii) mM>∆+cM in the allowable range for ∆,

(iv) cM>vM

(v) In the specified range for w,
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Lemma 19:

For Game C,

(i) the manufacturer chooses a positive quantity premium, i.e. ∆*(w)>0

(ii) the supplier’s profit strictly increases with increasing ∆

(iii ) ΠT(w,∆*(w)) the expected total supply chain profit for the price schedule (w,∆*(w)), is

strictly greater than the expected total supply chain profit ΠT(w) when no quantity premium is

offered but the supply chain is not completely coordinated, i.e. ΠT(w)<ΠT(wcrit).

Proof:

(i) The derivative of ΠM(w,∆) with respect to ∆ is given in the proof of Lemma 18,
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So, at ∆=0,
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From lemma 14(ii), the first bracketed term is > 0.  The second bracketed term is also >0.

Therefore,
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From Lemma 18 ΠM(w, ∆) is a strictly concave function of ∆.  ΠS(w,∆) is increasing at ∆=0 and

so the optimal ∆* is strictly greater than 0.
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(ii) For a fixed wholesale price, w, the supplier’s profit as a function of ∆, ΠS(w,∆), is given by,
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Taking the derivative with respect to ∆,
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So for a fixed wholesale price w<wcrit, the supplier’s expected profit increases if the manufacturer

offers a positive quantity premium.

(iii) From (i) the manufacturer chooses a ∆>0 and its profit strictly increases.  From (ii) the

supplier’s profit strictly increases.  Therefore the total channel profits are greater than in Game A,

i.e. ΠT(w,∆*(w))>ΠT(w).  From (i) 0<∆*(w).  I will now show that ∆*(w)<∆crit.
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ΠM(w,∆), restricted to 0≤∆≤∆crit, is a concave function of ∆.  Therefore, because
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the optimal ∆ for the manufacturer is given by the first order condition and 0<∆*(w)<∆crit.

Therefore the channel capacity is strictly less than that chosen by a central decision-maker and

thus the total channel profit is strictly less then those obtained by a central decision-maker, i.e.
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ΠT(w,∆*(w))<ΠC=ΠT(wcrit), where the central decision-maker expected profit is the same as the

total supply chain profit in Game A if w=wcrit (Lemma 5).

Lemma 20:

(i) If FX(x) satisfies the concavity condition, then the manufacturer’s profit ΠM(w,∆), restricted to

pS+cS<w+∆<wcrit and ∆>0, is a strictly concave function of w and ∆.

(ii) The first order conditions for w and ∆ are necessary and sufficient for (w*,∆*) to be optimal.

Proof:

(i) From Lemma 18,
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Taking the partial derivative with respect to the wholesale price w,
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Taking the second derivative with respect to w,
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Now,

(i) ∆≥0,

(ii) 0
),(

>
∂

∆∂
w

wyS  from Lemma 14(ii)

(iii) As FX(x) satisfies the concavity condition, 0
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(iv) mM≥∆+cM is the allowable range for w

(v) cM>vM

(vi) In the specified range for w,
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I will now use the following theorem (Theorem 2.13 from Avriel, Diewert, Schaible and Zang

,1988): Let f be a differentiable function on the open convex set C⊂Rn.  It is concave if and only

if for every two points x1∈C, x2∈C,

( ) [ ] 0)()( 1212 ≤∇−∇− xxxx ff
T

It is strictly concave if and only if this inequality is strict for x1≠ x2.

So, for this problem the condition is that for every (w1,∆1) and (w2,∆2) in the allowable region

(pS+cS<w+∆<wcrit and ∆>0),



227

0
),(),(

)(
),(),(

)(
1212

1212 ≤







∆∂

∆Π∂−
∆∂

∆Π∂∆−∆+







∂

∆Π∂−
∂

∆Π∂−
∆=∆∆=∆==

ww

w

w

w

w
ww MM

ww

M

ww

M

…. (L20.1)

From above,
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So, the first term in L20.1 is < 0 unless w2=w1, for which it is = 0.  Similarly, the second term in

L20.1 is < 0 unless ∆2=∆1, for which it is = 0.  Therefore, L20.1 is ≤ 0 for every (w1,∆1) and

(w2,∆2) in the allowable region and this inequality is strict for every (w1,∆1)≠(w2,∆2).  Using the

above theorem, ΠM(w,∆), restricted to pS+cS<w+∆<wcrit and ∆>0, is a strictly concave function of

w and ∆.

(ii) From Lemma 19 (iv), for any w<wcrit, 0<∆*(w)<∆crit, so 0<∆*<∆crit If w=pS+cS, then in effect

there is no quantity premium and ∆ is the constant wholesale price per unit.  From 19(i), the

manufacturer chooses a positive quantity premium.  Therefore w*>pS+cS.  At wcrit, the

manufacturer does not offer any quantity premium, i.e. ∆*(wcrit)=0, as the manufacturer’s capacity

dictates the supply chain capacity for any positive quantity.  We therefore only need to consider

the case of w*=wcrit and ∆*=0.  However, this is the same as a constant wholesale price schedule

and from Lemma 11(ii) w* is strictly less than wcrit.  So 0<w*<wcrit.

Lemma 21:

(i) If FX(x) satisfies the concavity condition given by equation (2), then the total expected channel

profit when the manufacturer chooses both a wholesale price and a quantity premium is strictly

greater than the total channel profit when the manufacturer only chooses a wholesale price but it

is strictly less than the total supply chain profit when the supply chain is completely coordinated.
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Proof:

Letting ΠM(w) be the manufacturer’s profit as a function of w when no quantity premium is

allowed, then, using the expressions for ∂ΠM(w,∆)/ ∂w and dΠM(w)/dw given in Lemmas 20 and

10 respectively,
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Let (w*,∆*) be the optimal (w,∆) pair chosen by the manufacturer and w** be the optimal w

chosen when no quantity premium is allowed.  From Lemma 21 and Lemma 10, the following

first order conditions must be satisfied,
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Now,

(i) From Lemma 19(i) ∆*>0.

(ii) 0
)(

>
dw

wdyS  from Lemma 4(ii)

(iii) FX(yS(w*)) < 1

So,
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But, from Lemma 10, ΠM(w) is a strictly concave function so w**< w*+∆*.  From Lemma 20,

for any w, ∆*(w)<∆crit.  Therefore at w*, ∆*=∆*(w*)<∆crit, or w*+∆*<wcrit.  Therefore, the

optimal channel capacity is strictly greater when a quantity premium can be offered and thus the

total channel profits, which depend only on the channel capacity, are strictly greater when a

quantity premium can be offered.
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As w*+∆*<wcrit, the total supply chain capacity is strictly less than that chosen by a central

decision-maker.

Lemma 22:

The following continuous quantity premium price schedule is an optimal wholesale price

schedule for the manufacturer,
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Furthermore, it completely coordinates the supply chain but leaves the supplier with an expected

profit of zero.

Proof:

For a wholesale price schedule specified by W′(Q), let ΠS(y,W′(Q)) be the supplier’s expected

profit from choosing a capacity of y if the manufacturer has infinite capacity.
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So the supplier receives an expected profit of zero for all capacity choices.

For a wholesale price schedule specified by W′(Q), let ΠM(y,W′(Q)) be the manufacturer’s

expected profit from choosing a capacity of y if the supplier has infinite capacity.
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as r>pM+pS+vS+vS.

So, ΠM(y,W′(Q)) is concave in y and the first order condition is sufficient for optimality.  The

first order condition is given by,

I
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The manufacturer’s optimal choice is the same as that of a central-decision-maker.  The

supplier is indifferent to its capacity choice from above, so it is willing to invest in this capacity

also.  The supply chain is completely coordinated.  The manufacturer captures the total expected

supply chain profit as the supplier’s expected profit is zero.

Note that one can induce the supplier to choose yI by introducing an arbitrarily small quadratic

penalty into the wholesale price schedule.

Lemma 23:

In the N supplier exogenous wholesale price game, the manufacturer and suppliers choose

their capacities to be yM*=yS1*=…=ySN*=min{ yS
min(w1,…,wN),yM(wTot)}.

Proof:

Supplier N never chooses a capacity larger than the supplier N-1’s capacity choice, as its total

sales are limited by the this capacity.  From Lemma 3, supplier N’s profit, ΠSN(yN), is concave

with the maximum achieved at ySN(wN).  For yN<ySN(wN), ΠSN(yN) is increasing in y.  Therefore, if

supplier N-1 announces a capacity of yN-1, then supplier N chooses a capacity of min{ yN-

1,ySN(wN)}.  Supplier N-1 therefore does not choose a capacity larger than ySN(wN).  Repeating this

argument for suppliers N-1 through 1, the suppliers choose their capacities equal to

min{ yM,yS1(w1),…,ySN(wN)}, where yM is the capacity announced by the manufacturer.  From

Lemma 2, the manufacturer’s profit, ΠM(y), is concave with the maximum achieved at yM(wTot).

For y<yM(wTot), ΠM(y) is increasing in y.  The manufacturer does not choose a capacity larger than

the suppliers would be willing to choose.  Therefore, the manufacturer chooses its capacity,

yM*=min{ yM(wTot),yS1(w1),…,ySN(wN)}.  The suppliers then choose their capacities such that

yS1*=…=ySN*=min{ yM(wTot),yS1(w1),…,ySN(wN)}.  By definition yS
min(w1,…,wN)=minn{ ySn(wn).
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Lemma 24:

(i) yM(wTot)=yI*, the coordinated channel capacity, iff crit
TotTot ww = , where

Tot
s

Tot
sMM

Tot
sM

Tot
sM

Tot
sMM

Tot
s

Tot
sMcrit

Tot
vcvc

cvvcpvcvcpr
w

−+−
−+−+−−

=
)())((

and yM(wTot)≥yI* iff crit
TotTot ww ≤

(ii) ySn(wn)=yI* iff crit
nn ww = ,where

Tot
s

Tot
sMM

Tot
sMS

Tot
sMS

Tot
s

Tot
sMMSSS

Tot
sMcrit

n
vcvc

ccvvvcvcvcpvcppr
w nnn

−+−

+++−−+−+−−−
=

)()()())((

and ySn(wn) ≥yI* iff crit
nn ww ≥ .

(iii) crit
Tot

N

n

crit
n ww =∑

=1

(iv) Complete channel coordination occurs iff wn=wn
crit n=1,…,N.
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(iii)
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(iv) Complete channel coordination occurs iff the supply chain capacity choice is equal to yI*.

In other words, from Lemma 37, one needs min{yS1(w1),..,ySN(wN),yM(wTot)}=yI*.  This is true

iff (a) yM(wTot)≥yI*, (b) ySn(wn)≥yI*, n=1,…,N and (c) one of the inequalities in (a) or (b) to

hold with equality.  From (i) above, yM(wTot)≥yI* iff wTot≤wTot
crit.  So (a) holds iff wTot≤wTot

crit.

From (ii) above, ySn(wn)≥yI*, n=1,…,N iff wn≥wn
crit n=1,…,N.  So (b) holds iff wn≥wn

crit

n=1,…,N.  Therefore, using (iii) above, (a) and (b) both hold iff wn≥wn
crit n=1,…,N and

wTot=wTot
crit.  However, if some wn>wn

crit, then wTot=wTot
crit iff some other wn<wn

crit.  This cannot

be if (a) and (b) both hold.  Therefore (a) and (b) both hold iff wn=wn
crit n=1,…,N, which

implies wTot=wTot
crit.  For these wholesale prices the inequalities in (a) and (b) all hold with

equality so (c) holds.

Lemma 25:

In the N supplier wholesale price game, if FX(x) satisfies the concavity condition, then

(i) The manufacturer’s expected profit as a function of the suppler 1 wholesale price w, ΠN
M(w),

restricted to pS1+cS1<w≤w1
crit, is a strictly concave function.

(ii) The optimal wholesale prices wn* are strictly less than wn
crit, n=1,…,N.

(iii) The channel fails to be completely coordinated.
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Proof
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(i) From Lemma 4(ii),  0 
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1 >
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(ii) As FX(x) satisfies the concavity condition, then    0
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2
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dw

wyd S

(iii) r>w+pM+cM in the allowable range for w,

(iv) cM>vM

(v) FX(yS(w))≤(r-pM-G(w)-cM)/(r-pM-G(w)-vM)<1

(vi) A1>0

Using (i)-(vi), 0
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As ΠN
M(w) is concave function, w* must be strictly less than w1

crit.  The optimal wholesale

price for supplier 1 is w1*=w*.  The optimal wholesale prices for w2,…,wN, are given by

Tn
1(wn*)=w1*, n=2,…,N.  Tn

1(wn) is a one-to-one mapping such that ySn(wn)=yS1(T
n

1(wn)).  T
n

1(wn)

is strictly increasing in wn.  ySn(wn
crit)=yS1(w1

crit), therefore Tn
1(wn

crit)=w1
crit.  As w1*<w1

crit,

wn*<w1
crit, n=1,…,N.

(iii) From Lemma 38(iv), the channel is only coordinated if wn=wn
crit n=1,…,N.  Therefore, the

channel is not completely coordinated when the manufacturer sets the prices to maximize its

expected profit

Lemma 26:

(i) If βS<(r-c)/(r-v), then a central decision maker would invest in either medium or large

capacity, investing in medium capacity if βL≤(c-v)/(r-v) and in large capacity otherwise.

(ii) If βS<(r-c)/(r-v) and βL≤(c-v)/(r-v), then a quantity premium price schedule of (c,∆M*) induces

the supplier to invest in medium capacity, where )(
1

* vc
S

S
M −





−

=∆
β

β
.  Furthermore, the

channel is completely coordinated and the manufacturer captures all the expected supply chain

profit.

(iii) If βS<(r-c)/(r-v) and βL>(c-v)/(r-v), then a quantity premium price schedule of (c,∆M* ,∆L*)

induces the supplier to invest in large capacity, where ∆M* is given above and
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1

1* vc
S

S

L

L
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−
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β
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β
.  Furthermore, the channel is completely coordinated and the

manufacturer captures all the expected supply chain profit.

Proof:

(i) Let ΠI(K) denote the expected profit obtained by a central decision-maker that invests in a

capacity of K.  Then,
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A central decision-maker does not invest in small capacity if ΠI(M)>ΠI(S).
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If βS<(r-c)/(r-v), then a central decision maker invests in either medium or large capacity.  For

this range of βS it invests in medium capacity iff ΠI(M)>ΠI(L).
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(ii) Let the manufacturer offer the following quantity premium price schedule, (c,∆M,∆L).  Let

ΠS(K,c,∆M,∆L) denote the expected profit obtained by the supplier if it invests in a capacity of K,

for this price schedule.

[ ] [ ]
[ ] [ ]

[ ]
))(())(()()(                           

))(())((                                

)())(()(),,,(

))(()1()(),,,(

0),,,(

MBvrSMvrBvcMvr

MLcSMccS

MLvSMccSSLvcScLcL

SMccSSMvcScMcM

cScScS

LS

LMML

MMSLMS

MSSLMS

LMS

−−+−−−−−−=
−∆+∆++−∆+++

−+−∆+++−++−=∆∆Π
−∆++−+−++−=∆∆Π

=+−=∆∆Π

ββ
β

ββ
ββ

The supplier prefers (or be indifferent to) M to S, if ΠS(M,c,∆M,∆L)≥ΠS(S,c,∆M,∆L).

0)(
1

),,,(),,,( ≥−





−

≥∆⇔∆∆Π≥∆∆Π vccScM
S

S
MLMSLMS β

β

The supplier prefers (or be indifferent to) L to M, if ΠS(L,c,∆M,∆L)≥ΠS(M,c,∆M,∆L).

0)(
1

1
                                                              

)(
1

),,,(),,,(

≥−





−

−
−

≥∆⇔

−




 −
≥∆+∆⇔∆∆Π≥∆∆Π

vc

vccMcL

S

S

L

L
L

L

L
LMLMSLMS

β
β

β
β

β
β

If βS<(r-c)/(r-v), βB≤(c-v)/(r-v) and the manufacturer offers a quantity premium price schedule

of (c,∆M*,0), then ΠS(S,c,∆M,0)=ΠS(M,c,∆M,0)>ΠS(L,c,∆M,0), and the supplier invests in medium

capacity.  A central decision-maker would also invest in medium capacity and thus the channel is

completely coordinated.  The manufacturer’s expected profit is given by,
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and thus the manufacturer’s expected profit is the same as the total expected supply chain profit

obtained by a central decision-maker.  The manufacturer can do no better than this and is thus this

quantity premium price schedule of (c,∆M*,0) [or (c,∆M*)] is optimal for the manufacturer.

(iii) If βS<(r-c)/(r-v), βL≤(c-v)/(r-v) and the manufacturer offers a quantity premium price

schedule of (c,∆M*,∆L*), then ΠS(S,c,∆M*,∆L*)=ΠS(c,∆M*,∆L*)=ΠS(c,∆M*,∆L*), and the supplier

invests in large capacity.  A central decision-maker would also invest in large capacity and thus

the channel is completely coordinated.  The manufacturer’s expected profit is given by,
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and thus the manufacturer’s expected profit is the same as the total expected supply chain profit

obtained by a central decision-maker.  The manufacturer can do no better than this and is thus this

quantity premium price schedule of (c,∆M*,∆L*) is optimal for the manufacturer.
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5.2  Appendix 2

This appendix contains proofs of the lemmas from Chapter 3.

Lemma 1:

(i) A lower bound for the minimum shortfall in problem P1 is given by problem P2,
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(ii) If either the number of stages K or the number of products I is less than three, then the

minimum shortfall in problem P1 is equal to the lower bound in (i).

Proof:

(i) P1 is given by,
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Let πi
k be the dual variables for the Type 1 constraints and µk

j be the dual variables for the

Type 2 constraints.  Letting νk
j=-µk

j gives us the following dual problem D1,
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Let C be the set of solutions to D1 that meets the following two conditions,
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(i) }1,0{∈�

(ii)


 ∈=

=
otherwise  0

)(somefor   1 if  1 jQ i kk
ik

j

π
ν

Each element in C is a feasible solution to D1.

Let E be the set of feasible solutions to P2.  A feasible solution (M,L1,..,LK) to P2 has the

following objective value,
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There is a one-to-one correspondence between elements in C and elements in E; each element

in C has a corresponding element in E with the same objective value and vice versa.  To see this,

consider an element (M,L1,..,LK) of E.  This can be mapped into an element of C as follows.  For

k=1,…,K set k
k
i L i ∈∀=   1π , k

k
i L i ∉∀=   0π , )(  1 k
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This is the same as the objective value for (M,L1,..,LK).  Similarly any element of C can be

mapped into an element of E by setting Lk to be the set of all products i with 1=k
iπ  k=1,…,K.

Note that because of the Type 1 constraints, at most one k
iπ  can equal 1 for each i=1,...,I, so that

k’k LL k’k ≠∀∅=∩ .  Again the objective value of this element of E is equal to the objective

value of the element of C.

Therefore, each feasible solution to P2 corresponds to a feasible solution to D1.  The objective

value of such a solution gives a lower bound on the optimal value of D1, and hence from duality a

lower bound on the minimum shortfall objective value of P1.  The optimum value to P2 is the

maximum such lower bound.

(ii) From duality, the optimal solution to P1 must equal the optimal solution to D1.  From part (i),

P2 gives the optimal solution to D1 subject to,

(i) }1,0{∈�

(ii)

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otherwise  0

)(somefor   1 if  1 jQ i kk
ik
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ν

If the optimal solution to D1 can be shown to satisfy both (i) and (ii), then P2 gives the optimal

solution to D1 and hence the optimal solution to P1.
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Let (π,ν) be a feasible solution to D1 such that some νj
k>πi

k ∀ i∈Qk(j).  The objective function

can increased by decreasing νj
k until }{max

)(

k
i

jQi

k
j k
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= without violating any constraint.

Decreasing νj
k any further violates a Type 2 constraint.  Therefore, an optimal solution must

satisfy *}{max*
)(

k
i

jQi

k
j k
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= .  Assume for the moment that the optimal solution to D1 is binary, i.e.

satisfies condition (i).  Then, condition (ii) must hold as *}{max*
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k
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jQi

k
j k

πν
∈

= .

All that remains to be shown is that the optimal solution to D1 is binary.  Substitute

k
j

k
jy ν−= 1  into problem D1.  The following problem D2 is obtained.
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If k
jy is negative, then the Type 2 constraints in which it appears are satisfied with strict

inequality because from the Type 1 constraints 1≤k
iπ .  Set k

jy  to zero.  This solution remains

feasible.  The objective function is strictly increased.  Therefore D2 can be restricted to

0y ≥ without any affect on the optimal solution.  The upper bound constraints on the y variables

(Type 3) can be ignored as the non-negativity of the  variables along with the Type 2

constraints ensure that the y upper bounds are not exceeded.  Therefore D2 can be solved by the

following problem D3,
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Let A be the constraint matrix of the linear program D3.  A is the clique matrix of the

undirected graph G, in which the π and y variables are nodes.  Figure 1 shows an example of the

graph G.



242

Nodes: y1
j=1,…,J1

Nodes: y2
j=1,…,J2

Nodes: yK
j=1,…,JK

Nodes: π2
i=1,…,I

Nodes: πK
i=1,…,I

Nodes: π1
i=1,…,I

Note: The (πk
i,πk’

i) arcs are only shown for i=1

Figure 1
The Constraint Matrix A is the Clique Matrix of the above Graph, G

STAGE 1

STAGE 2

STAGE K

A k
iπ  variable is a node for product i at stage k and a k

jy  variable is a node for the jth plant of

stage k.  An arc joins k
iπ  to k

jy  ∀j∈Pk(i), i.e. the product node i at stage k to all plants that can

process product i at stage k.  For each product i, there is an arc ( k
iπ , ’k

iπ ) from node k
iπ  to ’k

iπ

k’>k , k=1,…,K.  In other words the  variables for product i have arcs to all other  variables
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for product i.  Note that I use the convention that ( k
iπ , ’k

iπ ) arcs always have the smaller k value

as the first node of the arc.  There are no arcs joining the  variables of two different products.

The k
iπ  k=1,…,K for each product i form a clique as does each k

iπ  to k
jy  arc.

If the number of stages K is less than three, then G is a bipartite graph.  To see this, group all

1
iπ  and 2

jy  nodes in Set 1.  Group all 2iπ  and 1
jy  nodes in Set 2.  The only arcs in G are those

joining a node in Set 1 to a node in Set 2.  As G is bipartite, it is a perfect graph (Nemhauser and

Wolsley, 1988).

If the number of products I is less than three, then the graph G is again perfect.  The proof of

for this case is a little more involved and is most easily understood by referring to Figure 1.

� Consider a cycle with no (k
1π , ’

1
kπ ) type arcs and no (k

2π , ’
2
kπ ) type arcs.  This cycle must

contain only ( k
iπ , k

jy ) type arcs for a single stage k.  Such a cycle must have an even

number of arcs as each stage k’s subgraph is a bipartite.

� There is no cycle with exactly one (k1π , ’
1
kπ ) type arc and no (k

2π , ’
2
kπ ) type arcs as such a

cycle would leave the set of  nodes for stage k and never return.  Likewise there is no

cycle with exactly one ( k
2π , ’

2
kπ ) type arc and no (k

1π , ’
1
kπ ) type arcs.

� Consider a cycle exactly one (11
kπ , ’

1
1kπ ) type arc and exactly one (2

2
kπ , ’

2
2kπ ) type arc,

where the subscript on the stage k denotes the product i to which it refers.  We must have

k1=k2 and k1’=k2’ as otherwise the “cycle” would leave the set of  nodes for stage k1 and

never return.  Clearly this would not be a cycle.  Any cycle in which k1=k2 and k1’=k2’

must have an even number of arcs.

Therefore, any cycle that contains no more than one (k
1π , ’

1
kπ ) type arc and no more than one

( k
2π , ’

2
kπ ) type arcs must have an even number of arcs.  So any odd length cycle must contain at

least two ( k
iπ , ’k

iπ ) type arcs for i=1 or 2.  Consider a cycle containing at least two (k
iπ , ’k

iπ ) type

arcs.  The only clique of graph G that contains ( k
iπ , ’k

iπ ) arcs is the clique },,,{ 21 K
iii πππ K .  This

clique contains all such (k
iπ , ’k

iπ ) arcs and therefore contains another arc of the cycle.  Therefore

from Theorem 5.17 of Nemhauser and Wolsley (1988), the graph G is perfect.

So if either the number of products K or number of stages I is less than three, then G is a

perfect graph.  Therefore the polyhedron defined by D3 (Ax≤1) is integral.  The optimal solution

to D3 is thus integral.  In fact it is binary, because of the right hand side values.  This in turn

implies that the optimal solution to D1 is binary.
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Lemma 2:

(i) For any subset of products, M, define the problem P3(M) as
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If for every possible M, there exists an optimal solution to P3(M) with only one non-empty Lk*,

then a stage-spanning bottleneck can never occur in this case.

(ii) If 
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TCTC
K=

= ,then a stage-

spanning bottleneck can never occur.  Note that Amin is the minimum total capacity available to

any product at any stage and TCmax is the maximum total stage capacity across all stages.

Proof:

(i) Let d={d1,…,dI} be any demand realization.  Let M* be the optimal M set for problem P2

given this demand realization d.  If for every possible subset of products, M, there exists an

optimal solution to P3(M) with only one non-empty Lk*, then for the optimal set M* there exists

an optimal solution to P3(M*) with only one non-empty Lk*.  P3(M) is the internal minimization

in P2 and therefore if P3(M*) has only one non-empty Lk*, then P2 has only one non-empty Lk*.

By definition a stage-spanning bottleneck does not occur for this demand realization, d.  This is

true for any demand realization and so a stage-spanning bottleneck can never occur.

(ii) For any subset of products, M, let Λ(M) be the set of stages with non-empty Lk*, where Lk*

are the minimizing sets in P3(M), subject to there being at least two non-empty Lk* .  Then

|Λ(M)|≥2.
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Construct a set of Lk, k=1,..K, as follows.  Set U
K

k
k

new LL
1

*
1

=
= and ∅=new

kL , k=2,…,K.  The

objective value of this new set of Lk is bounded above by TCmax, the maximum total capacity of

any stage.  As TCmax≤2Amin, then the new set has an objective value for P3(M) at least as small as

the original Lk* set, and from part (i) a stage-spanning bottlenecks never occur if TCmax≤2Amin.

Note that if one defines an N-stage-spanning bottleneck as one in which there are exactly N

non-empty Lk*, then one can adapt the above proof directly to show that such a bottleneck can

never occur if TCmax≤NAmin.

Lemma 3:

If a supply chain is gmin-type, then (i) a stage-spanning bottleneck can never occur if the total

number of products, I, is less than or equal to 2gmin.  Furthermore, if at each stage each individual

product is connected to the same total capacity, then (ii) a stage-spanning bottleneck can never

occur if the total number of products, I, is less than or equal to 2(gmin+1)

Proof:

(i) Let Wk(Lk) be the total capacity available to a subset Lk of product at stage k.  As each stage k

has a g-type configuration with gk≥gmin, then Wk(Lk)=0 iff Lk={∅} and

Wk(Lk)≥min{TCk,(|Lk|+gmin-1)Ck} iff Lk≠{ ∅}, where as defined earlier TCk is the total capacity of

the stage and Ck=TCk/I.  As TCmin is the minimum total stage capacity, TCk≥TCmin and Ck≥Cmin,

therefore Wk(Lk)≥min{TCmin,(|Lk|+gmin-1)Cmin} iff Lk≠{ ∅}.  For any subset of products, M, let

Λ(M) be the set of stages with non-empty Lk*, where Lk* are the minimizing sets in P3(M),

subject to there being at least two non-empty Lk* .  Then |Λ(M)|≥2.  For this set of Lk*’s, the

objective value for P3(M) is given by,
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As the Lk* are non-empty for all k∈Λ(M), then |Lk*|≥1 for all k∈Λ(M).  Therefore,
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Without loss of generality, assume the first stage has the minimum total stage capacity.

Construct a new set of Lk, k=1,…,K, as follows.  Set U
K

k
k

new LL
1

*
1

=

= and ∅=new
kL , k=2,…,K.  The

objective value of this new set of Lk is bounded above by TCmin, the total capacity of stage 1.  If

TCmin≤2gminCmin, or alternatively I≤2gmin as TCmin=ICmin, then the new set has an objective value

for P3(M) at least as small as the original Lk* set.  Therefore for every possible M, there exists an

optimal solution to P3(M) with only one non-empty Lk*.  Following Lemma 2(a), a stage-

spanning bottlenecks can never occur if I≤2gmin.

Note that if one defines an N-stage-spanning bottleneck as one in which there are exactly N

non-empty Lk*, then one can adapt the above proof directly to show that such a bottleneck can

never occur if I≤Ngmin.

(ii) If Lk’* and Lk’’ * are non-empty with Lk’’ *={i}, i.e. it contains exactly one product, set

Lk’
new=Lk’*∪Lk’’ * and Lk’’

new={∅}.  Then,
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where the equality occurs because at each stage each individual product is connected to the same

total capacity.  So, a new set of Lk can be constructed with an optimal value to P3(M) at least as

small as the original optimum.  This is true for any |Lk*|=1.  Therefore any optimal set for P2 with

N>1 non-empty Lk* can be transformed into a new optimal set with N-1 non-empty Lk
new

 if some

|Lk*|=1.  Repeat this process until all non-empty Lk* have |Lk*|≥2.  So, |Lk*|≥2 for any stage-

spanning bottleneck.  Substituting this into (L3.1) yields a lower bound of 2(gmin+1)Cmin.  The rest

of proof follows as above.

Note that if one defines an N-stage-spanning bottleneck as one in which there are exactly N

non-empty Lk*, then one can adapt the above proof directly to show that such a bottleneck can

never occur if I≤N(gmin+1).
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Lemma 4:

If a supply chain is a gmin-type and has the following properties,

(i) each stage has a total capacity of at least the total expected demand

(ii) the demands for the I products are independent and identically distributed N(µ,σ)

then the probability of any particular LB stage-spanning bottleneck is bounded above by

ΩS(I,gmin), where,
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Proof:

From Section 3.3.1.1, an upper bound on the probability of (M,L1,…,LK) being a stage-

spanning bottleneck is given by,
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and the N stages with non-empty Lk are denoted by k1,…,kN.

From Lemma 5 below, as each stage in the supply chain has a g-value greater than or equal to

gmin, then
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and x is the number of products in M, i.e. x=|M| and Cmin is equal to TCmin/I, where TCmin is the

minimum total stage capacity.

As the product demands are iid, then,
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ΩS(x,N,I,gmin)=[1-Φ(y1)]Φ(y2) provides an upper bound on ΩS(M,L1,…,LK), which itself is an

upper bound on the probability that (M,L1,…,LK) is a stage-spanning bottleneck.  Note that this

upper bound does not depend on the actual M set and Lk subsets, only on the number of products,

x, in M and the number of non-empty Lk subsets, N.  As such it is valid for any (M,L1,…,LK) for

which |M|=x and for which there are N non-empty Lk subsets.

By maximizing ΩS(x,N,I,gmin) over all possible x for which there can be N non-empty Lk

subsets, the dependence of ΩS(x,N,I,gmin) on x can be removed, to give ΩS(N,I,gmin), an upper

bound on the probability of occurrence of any particular stage-spanning bottleneck with N non-

empty Lk subsets (in a supply chain that processes I products and that has a g-value of gmin).  From

Lemma 6 below, x, the number of products in M, must be less than or equal to I-N(gmin-1)-1, if M

is to be a stage-spanning bottleneck with N non-empty Lk subsets.  Therefore,
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(L4.1)

Note that as ΩS(x,N,I,gmin) is decreasing in Cmin, (L4.1) provides an upper bound on

ΩS(N,I,gmin) for any Cmin≥µ (i.e. any supply chain in which the minimum total stage capacity is

greater than or equal to the total expected demand).

ΩS(N,I,gmin) is decreasing in N, i.e. ΩS(2,I,gmin)>ΩS(N,I,gmin)∀N>2.  By definition a stage-

spanning bottleneck must have at least two non-empty Lk subsets, that is N≥2.  Therefore,

ΩS(2,I,gmin) gives and upper bound on the probability of occurrence of any particular stage-

spanning bottleneck, regardless of the number of non-empty Lk subsets.  So, setting

ΩS(I,gmin)=ΩS(2,I,gmin) proves the lemma.
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Note, if one is interested in the probability of occurrence of an N-stage-spanning bottleneck,

then ΩS(N,I,gmin) provides an upper bound on this probability.

Lemma 5:

If each stage in the supply chain has a g-value greater than or equal to gmin, then
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and x is the number of products in M, i.e. x=|M|.  Cmin is equal to TCmin/I, where TCmin is the

minimum total stage capacity.

Proof:

Let Wk(Lk) be the total capacity available to a non-empty subset, Lk, of products at stage k.  As

each stage k has a g-type configuration with gk≥gmin, then from equation (11)

Wk(Lk)≥min{TCk,(|Lk|+gmin-1)Ck}.  As TCmin is the minimum total stage capacity, TCk≥TCmin and

Ck≥Cmin, therefore Wk(Lk)≥min{TCmin,(|Lk|+gmin-1)Cmin}.  From Lemma 6 below, the number of

products in M, must be less than I-N(gmin-1), if M is to be a stage-spanning bottleneck with N

non-empty Lk subsets.  For each non-empty subset Lkn, n=1,…,N, |Lkn|≤|M|<I-N(gmin-1).

Therefore |Lkn|+gmin-1<I and (|Lkn|+gmin-1)Cmin<TCmin, so min{TCk,(|Lk|+gmin-1)Ck}=(|Lkn|+gmin-

1)Cmin.  Therefore, Wk(Lkn)≥(|Lkn|+gmin-1)Cmin for n=1,…,N.  So,
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as TCmin=ICmin.  Now,

( )[ ] ( ) ( )[ ] ( ) ),,(-1-1)( min21211 gIx,Nyyzz,L,M,L SKS =ΦΦ≤ΦΦ=K

as y1≤z1, y2≥z2 and Φ(z) is increasing in z.

Lemma 6:

If a supply chain is gmin-type, then a stage-spanning bottleneck with N non-empty Lk* and

|M*|≥I-N(gmin-1) can never occur.

Proof:

Let (M*,L1*,…,LK*) be an  LB stage-spanning bottleneck with N non-empty Lk* and |M*|>I-

N(h-1).  Let Wk(Lk) be the total capacity available to a subset Lk of product at stage k.  As each

stage k has a g-type configuration with gk≥gmin, then Wk(Lk)=0 iff Lk={∅} and

Wk(Lk)≥min{TCk,(|Lk|+gmin-1)Ck} iff Lk≠{ ∅}, where as defined earlier TCk is the total capacity of

the stage and Ck=TCk/I.  As TCmin is the minimum total stage capacity, TCk≥TCmin and Ck≥Cmin,

therefore Wk(Lk)≥min{TCmin,(|Lk|+gmin-1)Cmin} iff Lk≠{ ∅}.  Let Λ(M*) be the set of stages with

non-empty Lk*.  The objective value for P3(M*) is,
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Without loss of generality, assume the first stage has the minimum total stage capacity.

Construct a new set of Lk, k=1,..K, as follows.  Set U
K

k
k

new LL
1

*
1

=

= and ∅=new
kL , k=2,…,K.  The

objective value of this new set of Lk is bounded above by TCmin, the total capacity of stage 1.  If

TCmin≤(|M*|+N(gmin-1))Cmin, then the new set has an objective value for P3(M) at least as small as

the original Lk* set.  Therefore for every possible M, there exists an optimal solution to P3(M)

with only one non-empty Lk*.  Following the addendum to Lemma 2(i) regarding N-stage-

spanning bottlenecks, if TCmin≤(|M*|+N(gmin-1))Cmin, then a stage-spanning bottlenecks with N

non-empty Lk* can never occur.  TCmin=ICmin and therefore a stage-spanning bottlenecks with N

non-empty Lk* can never occur if I≤|M*|+N(gmin-1).

Lemma 7:

For a two-stage 4-product supply chain with each stage having 4 plants and a type h=2 chain

configuration, and all plant capacities being equal (=c), if the product demands are iid N(µ,σ),

then the probability that the stand alone shortfalls for the two stages are the same is greater than

or equal to,
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Proof:

Let SFk denote the random variable for the shortfall for stage k, k=1,2.  For a given demand

realization d1,…,dI, let mk* be the maximizing set for,

,I},{m
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k
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k

k mPj

k
j

mi
i

m

K1 subject to
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and let sfk be the optimal value for stage k, k=1,2 (i.e. the shortfall for this realization).  Let the

indicator function I12 be such that I12=0 if m1*=m2 and I12=1 if m1*≠m2.  As c1
j=c2

j, j=1,…,J,

sf1≠sf2 only if m1*≠m2*.  Therefore P[SF1≠SF2]≤P[I12=1].  Because the demand distribution is

continuous the probability that M1*≠M2* and SF1=SF2 is zero.  Therefore in this case,

P[SF1≠SF2]=[I12=1].  Note that the upper bound in the lemma is still valid if P[SF1≠SF2]≤P[I12=1].

The only possible chains for a 4-product 4-plant stage are {1,2,3,4}, {1,2,4,3} and {1,3,2,4}.

Let stage 1 have a {1,2,3,4} chain and stage 2 have a {1,2,4,3} chain.  For any demand
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realization, the possible m1* sets are {∅},{1},{2},{3},{4},{1,2},{2,3}, {3,4},{4,1},{1,2,3,4} and

the possible m2* sets are {∅},{1},{2},{3},{4},{1,2}, {2,4},{3,4},{1,3},{1,2,3,4}.  The events in

which I12=1 (m1*≠m2*) can be partitioned into the following mutually exclusive (and exhaustive)

events:

Event 1: m1*={∅}∩m2*≠{∅}

Event 2: m1*≠{∅}∩m2*={∅}

Event 3: m1*={1,2,3,4}∩m2*≠{∅}∩m2*≠{1,2,3,4}

Event 4: m1*≠{∅}∩m1*≠{1,2,3,4}∩m2*={1,2,3,4}

Event 5: m1*={i}∩m2*≠{i}∩m2*≠{1,2,3,4}∩m2*≠{∅}   i=1,2,3,4

Event 6: (m1*={1,2,3,4}∪m1*={∅})∩m2*={i}   i=1,2,3,4

Event 7: (a) m1*={1,2}∩(m2*∈{1,3}∪{3,4}∪{2,4})

(b) m1*={2,3}∩(m2*∈{1,3}∪{3,4}∪{2,4}∪{1,2})

(c) m1*={3,4}∩(m2*∈{1,3}∪{2,4}∪{1,2})

(d) m1*={4,1}∩(m2*∈{1,3}∪{3,4}∪{2,4}∪{1,2})

I now develop upper-bounds for the probability of each event.

Event 1: m1*={∅}, m2*≠{∅}

m1*={∅} implies:
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where i+1=1 if i =4.  Therefore, the only possible m2* (≠{∅}) sets are {1,3} or {2,4}.  For

m1*={∅} and m2*={1,3}, the following four conditions are necessary (but not sufficient),
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(iii) and (iv) imply that the following is a necessary condition for m1*={∅} and m2*={1,3},

c ddcdd ≤+>+ 4231    and   3

As the demands are iid N(µ,σ), the probability of this event is given by,
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and this is an upper-bound on P[m1*={∅} and m2*={1,3}].  As above, it can also be shown to be

an upper-bound on P[m1*={∅} and m2*={2,4}].  Therefore,
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Event 2: m1*≠{∅}∩m2*={∅}

Using the same derivation as for Event 1, but adapting for Event 2, the same upper-bound as 1

can be developed.  Therefore,
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22]P[Event 

CC

Event 3: m1*={1,2,3,4}∩m2*≠{∅}∩m2*≠{1,2,3,4}

m1*={1,2,3,4} implies:

1,2,3,4i               34

1,2,3,4i                         24

04

14321

4321

4321

=−+>−+++
=−>−+++

>−+++

+ cddCdddd

cdCdddd

Cdddd

ii

i

Therefore, the only possible m2* sets (≠{∅},≠{1,2,3,4}) or are {1,3} or {2,4}.

For m1*={1,2,3,4} and m2*={1,3}, the following two conditions are necessary (but not

sufficient),

0  43 (ii)

03 (i)

42432131

31

≤−+⇒−+++≥−+
>−+

cddcddddcdd

cdd

As the demands are iid N(µ,σ), the probability of this event is given by,
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and this is an upper-bound on P[m1*={1,2,3,4} and m2*={1,3}].  As above, it can also be shown

to be an upper-bound on P[m1*={1,2,3,4} and m2*={2,4}].  Therefore,


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Event 4: m1*≠{∅}∩m1*≠{1,2,3,4}∩m2*={1,2,3,4}

Using the same derivation as for Event 3, but adapting for Event 4, the same upper-bound as 1

can be developed.  Therefore,


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24]P[Event 
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Event 5: m1*={i}∩m2*≠{i}∩m2*≠{1,2,3,4}∩m2*≠{∅}   i=1,2,3,4

m1*={1} implies

c dcdddd

cdcdd

cdcd

cd

ii

i

24

1,2,3,4i                23

2,3,4i                          22
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14321
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Canceling terms, then

02 (iv)

0 (d)  0 (c)  0 (b)  0 (iii)(a)

2,3,4i                           (ii)
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41431322
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cddd
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cd
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Therefore, the only possible m2* set (≠{1},{1,2,3,4},{∅}) is {1,3}.  m2* cannot be ={j}, j≠1,

from (ii).  m2* cannot be {2,4} from (iv).  For m1*={1} and m2*={1,3}, the following conditions

are necessary (but not sufficient),

023 (vii)

0  43 (vi)

02 (v)

3131

42432131

1

≥−⇒−≥−+
≤−+⇒−+++≥−+
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cdcdcdd

cddcddddcdd

cd

As the demands are iid N(µ,σ), the probability of this event is given by,






 −Φ


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 −Φ




 −Φ

σ
µ

σ
µ

σ
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2

22

and this is an upper-bound on P[m1*={1} and m2*≠{1},{1,2,3,4},{∅})].  The same upper-bound

can be developed for P[m1*={i} and m2*≠{i},{1,2,3,4},{∅})], i=2,3,4.  Therefore,
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45]P[Event 
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Event 6: (m1*={1,2,3,4}∪m1*={∅})∩m2*={i}   i=1,2,3,4

Using the same derivation as for Event 3, but adapting for Event 4, the same upper-bound as 1

can be developed.  Therefore,
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46]P[Event 

Event 7: (a) m1*={1,2}∩(m2*∈{1,3}∪{3,4}∪{2,4})

(b) m1*={2,3}∩(m2*∈{1,3}∪{3,4}∪{2,4}∪{2,1})

(c) m1*={3,4}∩(m2*∈{1,3}∪{2,4}∪{2,1})

(d) m1*={4,1}∩(m2*∈{1,3}∪{3,4}∪{2,4}∪{2,1})

(a) m1*={1,2} implies

cddcdddd

cddcdd

cddcd

cdd

ii

i

34

2,3,4i                33

2,3,4i                          32

03
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211

21
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+

Therefore m2*≠{3,4}.  Only need to consider m2*={1,3} or {2,4}.

m1*={1,2} m2*={1,3}:

Canceling terms in the above equations, then

0 (iv)

 0 (c)  0  (b)  0 (a) (iii)

0  (c)  0  (c)  0  (b)  0 (a) (ii)

03 (i)
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But, m2*={1,3} implies

034 (v) 42314321 ≤−+⇒−+≤−+++ cddcddcdddd

Using (iv) and (v), then 022 432 ≤−++ cddd .  From (ii)(a) d2≥c.  Therefore,

02022 (vi) 4343 ≤−+⇒≤−++ cddcddc .

(i) and (vi) are thus necessary conditions for m1*={1,2} and m1*={1,3}.  As the demands are iid

N(µ,σ), the probability of this event is given by,
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This is an upper-bound on the probability that m1*={1,2} m2*={1,3}.  It can also be shown to be

an upper-bound on m1*={1,2} m2*={2,4}.  Therefore,
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Events 7(b),(c) and (d) have similar upper bounds.  Therefore,
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The probability of I12=1 (m1*≠m2*) is the sum of the probability of the above events.  Therefore,

∑
=

≤
7

1n
12 n]P[Event ]P[I .  So,
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As, P[SF1≠SF2]≤P[I12=1],






 −Φ




 −Φ




 −Φ+













 −Φ+




 −Φ




 −Φ≤≠
σ

µ
σ
µ

σ
µ

σ
µ

σ
µ

σ
µ cccccc

SFSF
2

22
8

5

32

2

2

2

32
8]P[ 21

and so,
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This proof can be repeated for the other possible chain pairings.
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5.3  Appendix 3

This appendix contains proofs of the lemmas from Chapter 4 and an algorithm for generating

the set of possible stage subsets over which the maximization in Lemma 1 is evaluated (c.f.

Lemma 3).

Lemma 1:

(i) A lower bound on the minimum total shortfall in problem P3 is given by

}{ max
)

),,1{
∑∑
∈∈⊆Λ

−
k

k
P(f

f
K

cd
K

(ii) If the path-stage matrix B is totally unimodular, then the minimum total shortfall in problem

P3 equals the lower bound in (i).

Proof:

Problem P3 is given by the linear program,
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Let πf be the dual variable for the Type 1 constraints and µk be the dual variable for the Type 2

constraints.  Letting νk=-µk gives us the following dual formulation (D3),
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Remember that P(Λ) is the set of flow paths that are processed by at least one stage k∈Λ and

Q(f) is the set of stages that process flow path f.
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Let problem D4 be the same as D3 but with the additional constraint that the solution be

binary.  For a feasible solution ),( , let Λ be the subset of stages k=1,…,K for which 1=kν .

This solution can be optimal only if 1=fπ  ∀f∈P(Λ) and 0=fπ  ∀f∉P(Λ), where the second

condition is required for feasibility.  To see this, consider a solution to D4 in which 0=fπ  for

some flow path f∈P(Λ).  This solution can be improved upon by setting 1=fπ .  This is a

feasible solution with an increased objective function.  Each of the possible optimal solutions is

therefore completely specified by the subset Λ.  The objective value for such a solution is given

by,

∑∑
∈∈

−
k

k
P(f

f cd
)

Any subset Λ of stages 1,…,K is a possible candidate for optimality and therefore the

optimum objective value to D4 is given by

}{ max
)

),,1{
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∈∈⊆Λ
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k
P(f

f
K

cd
K

As all solutions to D4 are feasible for D3, the optimal objective for D4 is a lower bound on the

optimal objective value to D3.  From duality the minimum shortfall for P3 is equal to the optimal

objective value to D3.

(ii) The constraint matrix, A, for D3 is given by,









−

=
BI

0I
A

where B is the path-stage matrix.  The path-stage matrix is the matrix in which there is a row for

each flow path, a column for each stage k and bfk=1 if k∈Q(f) and bfk=0 if k∉Q(f).  In other words,

element (f,k) is 1 if flow path f requires stage k and 0 otherwise.

A is totally unimodular (TU) if B is TU.  This follows from the fact that total unimodularity is

preserved under the following operations (Schrijver, 1987)

(a) multiplying a column by –1

(b) adding a row or column with at most one nonzero, being +/-1.

If B is TU then –B is TU using (a).  Then [I –B]  is TU using (b) and A is TU using (b) again.

So, if the path-stage matrix B is TU, then the constraint matrix A for D3 is TU and therefore

optimal solution to D3 is integral.  The Type 1 constraints ensure that Fff ∈≤  1π .  No optimal

solution can have any 1>kν  as the objective function can be decreased by setting such a 1=kν
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while still maintaining feasibility.  The optimal solution to D3 is therefore binary and thus from

part (i), the optimal objective value for D3 and P3 is given by,

}{ max
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−
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k
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f
K

cd
K

Lemma 2:

The path-stage matrices for the Alcalde Job Shop and for Work Center A are both totally

unimodular (TU).

Proof:

The path-stage matrix for the Alcalde job shop BAlcalde is given by,



























=

00100

00110

10111

00111

00101

01101

AlcaldeB

Total unimodularity is preserved under addition of a column with at most one nonzero, being

+/-1 (Schrijver, 1987).  Therefore BAlcalde is TU if the following submatrix S of BAlcalde is TU.



























=

110

110

111

111

101

101

S

S is TU if each collection of columns of S can be split into two parts so that the sum of the

columns in one part minus the sum of columns in the other part is a vector with entries only 0, +1,

and –1 (Schrijver, 1987).

Clearly any collection of two columns of S can be split into two such parts as each column

contains only 0’s or +1’s.  It only remains to show that a collection of all three columns can be

split in this manner.  Assign the first and second column to one part and the third column to the

other part.  The sum of columns in the first part is a vector with entries only +1 and +2.  The sum

of columns in the second part is a vector with every entry equal to +1.  Therefore the sum of
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columns in one part minus the sum of columns in the other part is a vector with entries only 0, +1,

and –1.  S is TU and thus BAlcalde is TU.

The path-stage matrix for Work Center A BWCA is given by,



















































=

100000010001

100000001001

110000001001

101000001001

100100001001

100010001001

100001001001

100000101001

100000100101

100000000101

100000100011

100000000011

100000000010

AEP

ADP

ADNP

ADLP

ADKP

ADIP

ADGP

ADFP

ACFP

ACP

ABFP

ABP

BP

PNLKIGFEDCBA

WCAB

where I have added the stages and flowpaths for clarity.  As discussed in Section 4.3.1, stages I

and N refer to the aggregated stages IJ and NO.  Column vectors are denoted by the associated

stage letter, e.g. A or P.

Total unimodularity is preserved under both column permutation and the addition of a column

with at most one nonzero, being +/-1 (Schrijver, 1987).  Therefore BWCA is TU if the following

submatrix S of BWCA is TU.
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








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




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




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






















=

000011

100011

100011

100011

100011

100011

100011

100111

010111

010011

001111

001011

001001

DCBFAP

S

where the columns G-N have been removed and the column order has been rearranged.  The

matrix S has the following two properties.

[1] Any collection of columns from {P,A,F} can be split into two parts so that the sum of

columns in the first part minus the sum of columns in the second part is a vector with entries

only 0 or +1.  To see this P-A, P-F and P+F-A are all vectors with entries only 0 or +1.

[2] The sum of any collection of columns from {B,C,D} is a vector containing only 0 or +1

entries.

From [1] and [2], any collection of columns of S can be split into two parts so that the sum of

the columns in one part minus the sum of columns in the other part is a vector with entries only 0,

+1, and –1.  Therefore S is TU (Schrijver, 1987) and thus BWCA is TU.

Lemma 3:

Any subset Λ that can be partitioned into two disjoint subsets Λm and Λn such that

P(Λm)⊆P(Λn), can be omitted from the set of subsets over which the maximum in Lemma 1 is

evaluated.
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Proof:

If Λ can be partitioned into two disjoint subsets Λm and Λn such that P(Λm)⊆P(Λn), then

P(Λ)=P(Λn).  This implies

∑∑∑∑∑∑∑
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and therefore Λ cannot be the optimum in the above maximization.

Algorithm for generating the set L of possible stage combinations in the maximization of

Lemma 1.

The set of stage combinations (or subsets) over which the maximum in Lemma 1 is evaluated

does not contain every single possible combination of stages.  Lemma 3 states that some stage

combinations (or subsets) can be removed.  An equivalent statement to Lemma 3 is given by,

If P(Λm)⊆P(Λn), then Λ=Λm∪Λn can be omitted from the set of subsets over which the

maximum in Lemma 1 is evaluated.

Denote the set of possible subsets by the set L.  By using this version of Lemma 3, it is

possible to compare two subsets to see whether the union of the two subsets can is contained in L.

Remember a subset Λ corresponds to a combination of stages and P(Λ) corresponds to the set of

flow paths processed by any stage in Λ.

This comparison can be done using matrix algebra as follows.  Let P(Λm) be specified by a

row vector

[ ]m
F

m rr ,,1 L=mR

where the element rf
m=1if f∈ P(Λm) and equals 0 otherwise for f = 1,…,F.  In other words, if a

flow path is processed by some stage in Λm, then the corresponding flow path entry equals one.

Let nR  be the flow path row vector for Λn.  Let mnmn RRR −=− .  If 0R mn ≥− , i.e. each element

is non-negative, then P(Λm)⊆P(Λn).  Likewise if 0R nm ≥− , then P(Λn)⊆P(Λn).  An algorithm for

comparing two subsets to see if the union of the subsets can be one of the subsets in L can be

specified as follows.
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ALGORITHM: COMPARE( mn RR , )

mnmn RRR −=−

nmnm RRR −=−

IF 0R mn ≥−

RETURN FALSE

ELSE IF 0R nm ≥−

RETURN FALSE

ELSE

RETURN TRUE

END

The COMPARE( mn RR , ) algorithm determines whether the union of two subsets is contained

in the set L.  However, we still need to generate the set L.  The algorithm for doing this is called

GENERATE L.

This algorithm works as follows.  The set L starts as an empty set.  All subsets containing only

one stage are then added to L.  Next, the possible subsets containing two stages are added to L.

Then the possible subsets with three stages are added, then four stages, etc. up until K stages.  At

this stage all possible subsets have been evaluated.  If a set with j-1 stages, say Λj-1, is not in L,

then no set that contains Λj-1 will be in L.  Therefore, when evaluating the subsets containing j

stages, one only needs to consider the subsets that are formed by the union of a single stage and a

subset containing j-1 stages that is already in L.

The algorithm is an iterative algorithm.  Each iteration corresponds to the evaluation of the

subsets containing j stages.  At the start of the iteration, the subsets in L that contain j-1 stages

will have been identified.  Each of these “j-1” subsets will have a row vector corresponding to the

flow paths processed by any stage in this subset (See above).  These row vectors will form the

matrix 1jM − .  The number of j-1 subsets will be specified by 1−jN .  The nth row vector of

1jM − will be identified by [ ]n
1jM − .In the algorithm, the stage subset corresponding to the nth row

vector of 1jM − will be identified by stage_subset[ ]n
1jM − .  In general, for any set Λ R{ Λ} is the

row vector corresponding to the flow path subset P(Λ).
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ALGORITHM: GENERATE L

Initialization: Adding the single stage subsets to L

L=EMPTY SET

FOR k=1 TO K

INCLUDE {k} in L

ATTACH row vector R{k} to bottom of matrix 1M

END k LOOP

Iteration: Generating the subsets with j stages that are in L, j=2,…,K

FOR j=2 TO K

FOR k=1 TO K

FOR n=1 TO 1−jN

COMPARE ( [ ]nk 1jMR −},{ )

IF RETURN = TRUE

{newset}={k}∪{ stage_subset[ ]n
1jM − }

INCLUDE {newset} in L

ATTACH row vector R{newset} to bottom of matrix 1M

END n LOOP

END k LOOP

END j LOOP

END


