5 Referencesand Appendices

5.1 Appendix 1

This appendix contains proofs of the lemmas from Chapter 2.

Lemma 1:

The optimal capacity choice, y;*, for a central decision-maker is given by,

S -¢ H_ ~aH —Pu—Ps—Cy —Cs
y =F 15::? lE_F 1 E
| X Y X H_pM ~Ps ~Vm ~Vs

Proof:
Thetota channe profit as afunction of y;, M(y;) is given by,

Y| Y

nly,)=-cy, +m IXfx (ax+my, [1-Fy (y,)] +v, I[Y| = X] fy (x)dx

Taking the derivative with respect to y.,%z—cI +m, —(m, —v,)Fy(y,). Thesecond
Y,
2
derivative with respect to y,, is% ==(m, —-v,) f (y,)

|
Theretail priceisrestricted to r>py+pstcytcs The salvage values are also strictly less than
the capacity costs. Therefore m-v;>0. The density function is non-negative, therefore,
d’r(y,)
dy, 2

and IM(y,) isaconcave function of y;. Therefore, the first order condition is sufficient for y,* to be

<0

the profit maximizing capacity. So,

dl—l(yl) :O |:| y: :F)Zl | _C| E
My B::' Vi
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Lemma 2:
For a given wholesale price, w, the optimal capacity choice, yu(w), for the manufacturer,

assuming the supplier hasinfinite capacity, is given by,
- Em -C 4 -w-py, —-C
W) = FAOMm MO F 1|:r M M
Y ()= Fx My _VME XB_W_pM ~Vm

Asfor Lemma 1 above, but replacing capacity, salvage and unit margin parameters as
appropriate.

Pr oof:

Lemma 3:
For a given wholesale price, w, the optimal capacity choice, ys(w), for the supplier, assuming
the manufacturer hasinfinite capacity, is given by,

w) = Eotds ~Cs :F—lﬁss_ps_cs
Ys(W) = Fyx S_VSE X = P Ve

Pr oof:

Asfor Lemma 1 above, but replacing capacity, salvage and unit margin parameters as

appropriate.

Lemma 4:

(1) ym(w) is strictly decreasing in w

(i1) y(w) is strictly increasing in w

(Note that Fx(X) is assumed to be continuous and differentiable)

Pr oof:

(i)

dyy (W) _ H 1 q Vm ~Cwm E< 0
dw fo (YM (W)) j(r_W_ Pwm _VM)2

(ii)

dysw) _H 1 % Cs~Vs H 0
dw fo (YS(W)) i
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Lemmab:
(i) Thereis aunique wholesale price, w, such that yy(w)=ys(w)
(i) This unique wholesale price, Wi, iS given by,

_(r=py)cs —Vs)+ ps(Cy —Vy ) +CyVs —CsVy,

W =
Cs ~Vg +Cy —Vy

crit

(iii) At this wholesale price, Werit, Yi(Werit) =Ys(Werit) =Yi*
(iv) If w=w;;, then the total channel profits equals the channel profits obtained by a central

decision-maker.

Proof:
(i) and (ii)From Lemma 4, yu(w) is strictly decreasing in w and ys(w) is strictly increasing in w.

Therefore yy(w) and y(w) can cross each other at most once.

) =R 0y =R
Y ~Vs

So, ym(w)=ys(w) iff,
Hny, —cy Ez Hmns - cg E
Hns ~Vs
My=r-w-py and ms=w-ps. S0, ym(W)=ys(w) only if,

W= (r = Py )(Cs =Vs) + Ps(Cy — V) *+Cy Vs —CsVy,
(Cs —Vs +Cy —Vy)

M~V

(i) yr*=ys(w) iff,

R R

M=r-Py-Ps, C;=Cumt+Cs, Vi=ViytVs and SO, yi* =yg(w) iff,

(r = Pw )(Cs =Vs) + Ps(Cy =V )+ Cy Vs —CsVy
(Cs Vs +Cy —Viy)

W=

which isthe same condition for yy(W)=ys(W) SO a Werit, Ym(Werit) =Ys(Weri) =Yi*
(iv) Thetotal channel profits depend only on the supplier and manufacturer capacity. Since,
ym(Weri) =Ys(Werit) =Y, the capacities are the same as those chosen by a central decision-maker and

therefore the total channel profits are the same.
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Lemma 6:
The necessary and sufficient condition on the demand distribution, Fx(X), for ys(w) to be a
concave function of w is given by,
BO-FM L 5 0y an)
[fx
For gtrict concavity, the inequality needs to be strict. This condition isreferred to asthe

(strict) concavity condition in the rest of the proofs. Note that this condition is equivalent to

requiring that g’)=0 [J x, where,

fy (X)
g(x):x—
[i-F 0F
Pr oof:
W) = E “Cs i pagVT Ps—Cs
H = e i oo
Therefore,

d’ysw) _H 1 %(1— Fulys(])’ FH 5 _Hfx (s W)a- Fxlys (W) H
w? G sl Cs-vsf HHTOH  [RGsw)F

The first bracketed term is > 0. Now, becauses, i.e. the salvage value is strictly less than

capacity cost,

-ps—C
Flys(w)] = %Eﬂ
~Ps ~Vs
Therefore, the second bracketed termis > 0. So, for
2
d C;/\;gw) <0
the third bracketed term needs tob@, and for strict concavity this term needs to be < 0. Indeed
this condition is sufficient. So, the necessary and sufficient conditigR(f@rto be a concave
function ofw is then given by,
Fx (Vs (WIL= Fy (YsW)] | _,
PAD

Sinceyg(w) is strictly increasing imv and since for everyJ[a,b] there is wholesale prigesuch

thatygw)=x, then this condition is satisfied iff

214



fy (Q[L-Fy (X)] >-2 OxO[ab]
[fx 0F

Lemma7:
(i) If Fx(X) isan increasing failure rate distribution (IFR), then,
fx (L= Fy ()]
[, (0F

and (ii) the strict concavity condition is satisfied so ys(w) is astrictly concave function.

>1 0OX

Proof:
(i) Thefailure rate function, h(x), for adistribution Fx(X), is defined as,
h(X) - fX (X)
1-Fy (X)

A distribution is said to have an increasing failure rate function (IFR) if h'(x) >0 Ox

_ [ _ 2
0 = B B R 09~ (4]
[1-Fx (X)]

If Fx(X) isan IFR distribution, then

1000 0x0 BTFOIBO-TH01 o
[1-F, (]
o BRI
[ (]

X

(i) Follows directly from part (i) and Lemma 6 above

Lemma 8:

In Game A, where the wholesale price is exogenous and the manufacturer is the Stackleberg
leader, the manufacturer and supplier choose their capacities such that
yv* =ys* =min{ ys(w),ym(w)}, where yu(w) and ys(w) are given by Lemma 2 and Lemma 3
respectively.

Pr oof:

The supplier never chooses a capacity larger than the manufacturer’s capacity choice, as its

total sales are limited by the manufacturer’s capacity. From Lemma 3, the supplier’s profit,
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M«(y), is concave with the maximum achieved at ys(w). For y<y{w), M«y) isincreasinginy.

Therefore, if the manufacturer announces a capacity of y, the supplier chooses a capacity of

min{y,ys(w)}. Likewise, the manufacturer never announces a capacity larger than the supplier

would choose, as its total sales are limited by the supplier's capacity choice. From Lemma 2, the
manufacturer’s profitflu(y), is concave with the maximum achievedgygiv). Fory<yu(w),

Mu(y) is increasing iry. Therefore, the manufacturer chooses its capacity,

ym*=min{ ys(w),yu(W)}. The supplier chooses a capacitynofi{ yy*, ys(w)}= mir{ ys(w),ym(w)}.

Lemma 9:
In Game B, where the manufacturer chooses the wholesale price, the manufacturer never

chooses a wholesale priee, such thatv>wyiq.

Proof:

Let the manufacturer choose a wholesale pri¢ew,;. The channel capacity is then given
by min{ys(w*), ym(W*)}. For w>Wgi, Ys(W)>yu(w), so the channel capacityyig(w*). However,
there exists a**< wyg;; such thays(w**)=yu(w*). [For everyx[[a,b] there is a wholesale price
Wws such that thagg(ws)=x. Likewise there is a unique wholesale prgesuch tha(wy)=x.
ys(w) is strictly increasing imv, ym(w) is strictly decreasing iw and there is a unique wholesale
price Wit for which yo(Weri) =Ym(Werit) -]

The manufacturer’s expected total sales depend only on the channel capacity. Thus the
manufacturer's expected sales revenue is the samé tordw**, as is the manufacturer’s
capacity cost and expected salvage revenue. The cost per unit sold is stricthyiess if
chosen. Therefore the manufacturer’s profit is strictly great@t*and so the manufacturer
never chooses\a>Wit.

Therefore, the manufacturer's wholesale price choice can be restrigtsadidp. For the
supplier to invest in capacity, the wholesale pngenust be larger than the sum of unit capacity
cost and unit marginal cost£pstcs). So the manufacturer’s optimal wholesale price falls within

pS+CS<WSWcrit.
Lemma 10:

If Fx(X) satisfies the concavity condition, then the manufacturer’s pirafifw), restricted to

PstCs<W<Wit, IS @ strictly concave function.
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Proof:
In this range the manufacturer’s profit,(w), is given by,
Ys (W)

My (W) ==Cy Ys(W) +(r = py —W) IXfx ()dx+(r = py —W)ys(W)1-Fy (ys(W))]

Ys(W)

- [lysW) =] i (x)dx

Taking the derivative with respectwg

dri,, (w) _
dw

des<w) 4= P =) =1 = Py =W (v ()

Ys(w)

- Ixfx (X)dx = ys(W)[1-Fy (ys(W))]

Taking the second derivative,

d’n w (W)
dW2

:Ed yS(W)E(r By ~W=Cyy) = (r = Py = W=Vyy )Py (Vs (W)])

—ZEBWSTWEHI' Fx (Ys(W)]=(r = py —w=vy) fx(ys(W))[ y(jV(VW)[g

Now,

(nmeLemmaqu%9@>o
W

(if) As Fx(x) satisfies the concavity condition, thgﬂgs—() <0

(i) r>w+py+cy in the allowable range fav,
(iv) cu>Vi

(v) In the specified range fov,
Fx [ys(W)] %Eﬁ F [yM (W)] —C pM VM E<1

2
d L MZ(W) < o
W

Using (i)-(v),
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Lemma 11:
If Fx(X) satisfies the concavity condition (egn. (2)) given in Lemma 6, then the optimal w for
Game B is given by thefirst order condition,

drty, (w) _ fdys(w) _ o o o
dw _Eddw g(r Pm ~W=Cy) = (r =Py —W VM)FX(yS(W)))

Ys(W)

- Ixfx (X)dx = ys(W)[L1-Fy (ys(W))]

=0
and the optimal w is strictly greater than pstcs and strictly less than wyi.

Proof:

From Lemma 9, the manufacturer’s optimal wholesale price lies viRIa<W* <W;;.. From
Lemma 10J1y(w) is a strictly concave function so the first order condition is sufficient for
optimality as long as the wholesale pria#, that satisfies the condition, lies in the interior of the
range pstCs<W<wWg;;. | will show that the optimal wholesale price satisSpesCs<W*< Wit

If wepstcs, then the supplier does not invest in any capacity and the manufacturer’s profit is
be zero. At the manufacturer’s profit is strictly positivély(w) is a strictly concave function

in the rang@s+Cs<SW<Wgi, SO We must have

driy (w)

>0
dw We pre
At W=Weit,
... (L11.2)
drl M (W) yS(Wcrit)
Tow L OO Yl )L P (s (i D] <O
... (L11.2)

Mu(w) is concave function. From (L11.2) the profit is decreasing-at,;, so the first order
condition must be satisfied fa<w,;;. From (L11.1) the profit is increasingwtpstcs.
Therefore, thev* that satisfies the first order condition must sat{sfyCs<w*<Wi;.
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Lemma 12:
If Fx(x) satisfies the concavity condition, then in Game B, the total channel profits, Mp, is

strictly less than the total channel profits obtained by a central decision-maker, Mc.

Pr oof:

M=, only if the channel capacity chosen is the same as that chosen by a central decision-
maker. Thisonly happensif the manufacturer chooses the wholesale price, w, such that W=w;;.
From Lemma 11, this never occurs. Therefore, the total channel profitsis trictly less than those

obtained by a central decision-maker.
Lemma 13:

For any allowable price schedule (w,A), pstcs<w+A<r-cy-py and A=0, then (i) the optimal

capacity choice, ys(w,A), for the supplier, assuming the manufacturer hasinfinite capacity, is

. +A-cC apw+A-pg-c
,A -F 1 S S -F 1 S S
ys(w,8) = Fy %E X H\N’fﬂ‘ps‘Vs%yS(W)

and (ii) the optimal capacity choice, ym(w,4), for the manufacturer, assuming the supplier has

given by,

infinite capacity, is given by,

_ -A-c 4 -w-A-py, -c
W’AzqunM M - pd M~ Cwm W
Vi (,0) XEan—A—vME XH_W_A_DM_VME@MU

Proof:
(i) Let Mgy,w,A) denote the supplier’s profit as a functiorydbr a price schedule o). If
A=0, then the supplier invests in capaciggw). However A>0, so when determining the

optimal capacityy{w,A), we only need to look gtys(w). In this range,

Ys(W)
Ms(y,W,A) =-cgy+mg IXfx (¥)dx +mgys (W)[1-Fy (Ys(W)]

y

+(ms +4) J’(X- Ys(W)) fx (X)dx -+ (mg +A)(y = ys (W)I[1 - Fx (y)]

ys(w)

s 1y = (9

219



dris(y,w,4) _

Taking the first derivative with respect to y, mg+A—-cg— (Mg +A-vg)F, (y)

dy
Taking the second derivative,
d?M<(y,w,A
%z-(ms A =vg) () <O

So, M4y,w,A) is aconcave function of y and the first order condition is sufficient for optimality.
Thus,

A-c Hw+A-pg—-c
= A _Hms + i s ~Cs
x50 20) Hms"'A_VSE E}‘N"'A‘ps‘VsE

(i) Proof follows similarly to (i) but the quantity premium, A, is subtracted from the unit margin.

Important Note for Proofs of Lemmas 14, 15 and 16:

(1) ys(w,A)=yg(W') and ym(w,A)=ym(W') wherew'=w+A.

(ii) The first and second derivativesya{w,A) with respect to eithex or A is the same as the
derivatives ofys(w') with respect tow'.

(i) The first and second derivatives wf(w,A) with respect to eithew or A is the same as the

derivatives ofyy(w') with respect to w'.

Given (i),(ii) and (iii), Lemmas 14, 15 and 16 follow directly from the proofs of Lemmas 4, 5 and
6. Fully worked proofs, independent of Lemmas 4, 5 and 6 are available.

Lemma 14:
() ym(w,A) is strictly decreasing in botkh andA.
(i) ys(w,A) is strictly increasing in botty andA.

(Note that k(x) is assumed to be continuous and differentiable)

Pr oof:

Follows from Lemma 4 and above note.
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Lemma 15:

For a given wholesale price w<w;; there is a unique quantity premium A, given by

WHA, = (r = Pm)(Cs ~Vs) + Ps(Cy ~Vim) +CuVs ~CsViy _ W,
Cs ~Vg +Cy —Vy

such that Y™ (WyAcrit) ZYS(W,Acm) =Y *.

Pr oof:

Follows from Lemma 5 and above note.

Lemma 16:

(i) ys(w,A) is aconcave function of both w and A iff the concavity condition given by equation (2)
holds for Fx(x).

(i) If Fx(x) isan IFR distribution then equation (2) is satisfied so ys(w,A) isa strictly concave

function of both A and w.

Pr oof:

0%ys(w,2)

(i) From Lemma 6
ow

< 0if and only if the concavity condition holds. From the above

2 2 2
nOte, a yS(WﬂA) - a yS(WvA) = a yS (W!A)

2
. Therefore, a%ST(\;VA) <0,

OWOA o’ ow’
2 2 2 2
0 y; i\;VvA) <0and Ela ysv(v‘;"’A) EHE) y;i\év,ﬂ) % Ep z\iv(c;NA,A) E <0. Soy{w,A) isaconcave

function of w and A.

(i) Follows directly from Lemma 7.

Lemma17:

For Game C the manufacturer never chooses a quantity premium, A, such that A>Ag;;.
Proof:

Similar to proof of Lemma9 but adapting for A instead of w. Therefore, the manufacturer’s

wholesale price choice can be restrictedthb<\;;.
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Lemma 18:
For Game C, if Fx(X) satisfies the concavity condition given by equation (2), then the

manufacturer’s profitl1y(w,A), restricted to 8A<A;, is a strictly concave function &f

Proof:
The manufacturer’s profifly(w,A), is given by,

Ys(W)

My (W,4) = —cy ys(W,4) +m, I)dx (X)dx +my ys(W)[L1-Fy (Ys(W)]

Ys(W,A)
+(my —4) I(X— Ys(W)) fx (X)dx
ys(w)
+(my —A)(ys(W,A) — ys (W)L~ Fx (Ys (W, A))]
ys(w.A)

Vi I[YS(WvA)_X]fx(X)dX

Taking the derivative with respect9

d,, (w.8) _ [eys(wd)
dA 0 dA
Ys(W,A)
- J'(X— Ys(W)) fx (3)dx = (ys(w,A) = ys(W)[1 - Fx (Ys(w,4))]

ys(w)

@(mM ~A=Cyy) = (My ~B=Vy, )Fy (Ys(W,2))]

Taking the second derivative,

d’n,, (w,a) _

2
ut @d Ys(w.4) @(mM —A-Cy) ~ (My A=y )Fy (Ys(W,A)]

da®
ABSD e (4 (w80 (m -84 (o) O]
O dA o dv g

Now,

(i) From Lemma 14(”),% >0

2
(ii) As Fx(x) satisfies concavity, then from Lemma 16 ,ngv’A) <0

(i) my>A+cy in the allowable range fdk,
(iv) cw>Vm

(v) In the specified range faov,

222



F [ys(W)] %%F [YM (W)] 2 \C;M E<1
s M

o d?r,, (w,A
Using ()-(v), “ 2845 <o
Lemma 19:

For Game C,

(i) the manufacturer chooses a positive quantity premium, i.e. A* (w)>0

(i) the supplier’s profit strictly increases with increasing

(it ) M+(w,A*(w)) the expected total supply chain profit for the price schedulE(w)), is
strictly greater than the expected total supply chain drigfitv) when no quantity premium is

offered but the supply chain is not completely coordinated, @) <M +(Wcit).

Proof:
(i) The derivative of 1y (w,A) with respect td\ is given in the proof of Lemma 18,

dr,, (w,4) _ [dys(w,A) _ )
dA Ed @(mm A-cy,)-(my —A-vy,)Fy (Ys(w, A))]
ys(w,A)
- I(X‘ yYs (W) fy (X)dX = (Y5 (W, A) — ys (W))[1— Fy (Ys (W, A))]
ys(w)
So, atA=0,
dr,, OI(AW,A) _ - HHE’YS SZV,A) ) @(mM —cy ) = (My =Vy )Fy (Ys(W)]

From lemma 14(ii), the first bracketed term is > 0. The second bracketed term is also >O0.
Therefore,

dr1,, (w,A)
dA

A=0

From Lemma 18&1y(w, 4) is a strictly concave function é&f Mg(w,A) is increasing ah=0 and

so the optimal\* is strictly greater than O.
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(i) For afixed wholesale price, w, the supplier’s profit as a function &f Mgw,A), is given by,

ys(w)
Ms(w,A) =-csys(W,A) +mg I)dx (¥)dx+mgys (W)[1-Fy (ys(w)]

Ys(w,A)
+(ms +4) I(X‘ Ys(W)) fx (X)dx
ys(w)
+(ms +A)(ys(W, A) — ys (W)][1- Fx (ys (W, A))]
Ys(w,A)

#vs [IysW) = ()

Taking the derivative with respect9

dMsw,a) _ [ys(w,
I d(ZVA) - E"y QZ”A) @(ms +A-cg) ~ (Mg —A-Vg)Fy (ys (W,A))]
YS(WrA)
£ [0 Yo () F (9K (Y5 (4.8) = Y (WL F (¥ ()]
Ys(w)
>0

So for a fixed wholesale price<w;, the supplier’s expected profit increases if the manufacturer
offers a positive quantity premium.

(iif) From (i) the manufacturer choose&a0 and its profit strictly increases. From (ii) the

supplier’s profit strictly increases. Therefore the total channel profits are greater than in Game A,
i.e. M(w,A* (W)>/T(w). From (i) 04*(w). | will now show thath*(w)<Ait.

Ys(W,A i)
SO = L Yo (W) (0= (Y5 (W) =Y ()L~ F (Y5 (8 )
da A=At Ys(w)
<0

Mu(w,4), restricted to 8A<A., is a concave function & Therefore, because

dr,, (w,A)
dA

drt,, (w,A)
da

>0 <0

A=0

A=A

crit

the optimalA for the manufacturer is given by the first order condition arsFQm) <A
Therefore the channel capacity is strictly less than that chosen by a central decision-maker and

thus the total channel profit is strictly less then those obtained by a central decision-maker, i.e.
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(W, A% (W) </Te=T+(Weit), Where the central decision-maker expected profit is the same as the

total supply chain profit in Game A if w=w,; (Lemma5).

Lemma 20:
(i) If Fx(x) satisfies the concavity condition, then the manufacturer’s pigfiv,A), restricted to
pstcs<w+A<w,;; andA>0, is a strictly concave function efandA.

(ii) The first order conditions faw andA are necessary and sufficient far(A*) to be optimal.

Proof:
() From Lemma 18,
0°M w (Ys(W,4)) <0
N>
Next, | will show that,

0°M w (Ys(w,4)) <0
ow?

Ys(W)
M (W,8) ==Cy ys(W,2) + my - [xfy (b +m, ysWL- Fy[ysw)]]

ys(w,A)
+(my —8) I(X-ys(W)) fx (X)dx

ys(w)

+(my —D)[ys(w8) -yswWL- Fylys(w,a)]]

ys(w,A)
+vy  [(ys(w,d) = x) fy (X)dx
ys(w)

Taking the partial derivative with respect to the wholesale price

ys(w,A)

T =P sl [ (=P lys(w ]

+PYs(wh) @(mM —A-cy )~ (M —A-vy, )Fy[Ys(w,A)])
o ow

Taking the second derivative with respecivto
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a2M (WA) Eh yS(W)Hl = [ys(w)]] Aﬁwgf (ys(w))

aw2
+EMEWM ~A-cy)—(My A=y )Fy [ys(WA)])

-2 F s ]
0 ow
- (m, —A—vM)fx<ys<w,A>)[B"ys‘§%A)[HQ

Now,
(i) A=0,

> 0 from Lemma 14(ii)

2 2
(iii) As Fy(X) satisfies the concavity condition, % <0 and % <0
(iv) my=A+cy isthe allowable range for w
(V) cv>Vm

(vi) In the specified range for w,
F [ys(W)] %% F [YM (W)] “8- CM E<1

92 (WA)

Using (i)-(vi), W

I will now use the following theorem (Theorem 2.13 from Avriel, Diewert, Schaible and Zang
,1988): Let f be a differentiable function on the open convex set COR". It isconcaveif and only
if for every two points x'00C, x*00C,

(2 -V [of (x?) - o (< 0
It is strictly concave if and only if thisinequality is strict for x'# x?

So, for this problem the condition is that for every (w*,4") and (w*,4°%) in the allowable region

(pstCe<WH+A<W;; and A>0),
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_ oMy, (w,A)

O O
(WZ—WI)QBHM(W'A) D+(A2—A1)EBHM(W’A)| _aI_IM(W!A)| 0< 0
O ow w=w? ow w=w! [ O 0A |A:A2 oA |A:A1 O
... (L20.1)
From above,
2
011, (w,A) <0
aWZ
Then if w>w?,
o, (w,A) < or,, (w,A)
ow Wew2 ow wewt
and if w<w?,
o, (w,A) S o, (w,A)
ow w=w? ow w=w!

So, the first term in L20.1 is < 0 unles&w", for which itis = 0. Similarly, the second term in
L20.1 is < 0 unlesA?=A*, for which itis = 0. Therefore, L20.14s0 for every @',A") and

(W?,A% in the allowable region and this inequality is strict for every/*)#z(w?A?). Using the

above theorent]y(w,A), restricted t@stcs<w+A<wg;; andA>0, is a strictly concave function of

w andA.

(i) From Lemma 19 (iv), for anw<wg;;, 0<A*(W)<A.i;, SO 0Q*< Ay If w=pstcs, then in effect

there is no quantity premium afAds the constant wholesale price per unit. From 19(i), the
manufacturer chooses a positive quantity premium. ThereforpstCs. At Wei, the

manufacturer does not offer any quantity premiumAféw,)=0, as the manufacturer’s capacity
dictates the supply chain capacity for any positive quantity. We therefore only need to consider
the case olv*=w;; andA*=0. However, this is the same as a constant wholesale price schedule

and from Lemma 11(ii) w* is strictly less thaRi. SO OW*<Wc;;.

Lemma 21:

(i) If Fx(x) satisfies the concavity condition given by equation (2), then the total expected channel
profit when the manufacturer chooses both a wholesale price and a quantity premium is strictly
greater than the total channel profit when the manufacturer only chooses a wholesale price but it

is strictly less than the total supply chain profit when the supply chain is completely coordinated.
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Proof:
Letting Myu(w) be the manufacturer’s profit as a functiomoivhen no quantity premium is

allowed, then, using the expressionsddi,(w,A)/ ow and d1y(w)/dw given in Lemmas 20 and

w'=w+A E

Let (w*,A*) be the optimal\,A) pair chosen by the manufacturer avid be the optimalw

10 respectively,

M08 - TV, fy )+ )

ow

chosen when no quantity premium is allowed. From Lemma 21 and Lemma 10, the following

first order conditions must be satisfied,

(W, A%): o, (w,A) -0 or,, (w,A) 0
aW W=wr A=A* aA w=w* A=A*
W amy W g
dW W=WF*

But,

o, (w,A . ) . n,, (w

M =A % @1_ Fylys(w )]]4.% E

ow W= A=A W | L PR

Now,

(i) From Lemma 19(ip*>0.

i) Y™ - 6 from Lemma 4(ii)
dw
(iii) Fx(ysw*)) <1
So,
Ny g ag T _,
W [mpeens o LV P

But, from Lemma 10[1(w) is a strictly concave function sg*< w*+A*. From Lemma 20,
for anyw, A*(W)<Aqi;. Therefore atv*, A*=A*(W*)<Agi, OFrW*+A*<wyi,. Therefore, the
optimal channel capacity is strictly greater when a quantity premium can be offered and thus the
total channel profits, which depend only on the channel capacity, are strictly greater when a
quantity premium can be offered.
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Asw*+A* <w,;, the total supply chain capacity is strictly less than that chosen by a central

decision-maker.

Lemma 22:
The following continuous quantity premium price schedule is an optimal wholesale price
schedule for the manufacturer,

dw(Q) _Cs~Vs Fx (Q) +
dQ 1-F(Q)

Ps

Furthermore, it completely coordinates the supply chain but |eaves the supplier with an expected

profit of zero.

Proof:
For awholesale price schedul e specified by W/(Q), let Mg(y,W{Q)) be the supplier's expected

profit from choosing a capacity gfif the manufacturer has infinite capacity.

y
Ms(y.W'(Q) = =y + [W0) = psx)T (ax+ (W(y) = pyIL=Fic ()]

y
+ VSI[Y =X fy ()ax

So,
50 WHQ) S();;N'(Q)) = —(cs =VsFx (N)+ W' (y) = ps JL- F ()]
Suppose,
) _Cs —VsFy (Q)
W'(Q) = ?X(Q) * Ps
Then,

s W'Q) _ (.
dy
So the supplier receives an expected profit of zero for all capacity choices.

s ~VsFx (Y))"' (Cs —VsFy (Y)): 0 Oy

For a wholesale price schedule specified\Q), let My (y,W1(Q)) be the manufacturer’s

expected profit from choosing a capacityydf the supplier has infinite capacity.
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y
M (Y W'(Q) = =y Y+ [ (T = Py )X =W()) T )b+ (r = Py )y ~W(Y) J1= Fe ()]

y
+vi [y = (e

So,
an,, (QN_'@) = (= pu ~W M- Fx]=[ow v Fx ()]
and,
T L) - py v W))W R )]
Suppose,
) _Cs—VsFy (Q)
W(Q) = W + Ps
Then,
" (Cs _Vs)fx Q)
W'(Q) =3 sl x )
@ @-F @Y
Therefore,
i RUR et LAV AT
X
== Fx (Y)\F =Py — Ps)=Cs +Vghy (Y) —Cy +Vy Fx (Y.
fi-F () ) Fy () Fy ()
= (r ~Pm ~ Ps—Cy _Cs)_ Fx (Y)(r ~Pm ~ Ps ~Vy _Vs)
and
d?r,, (y,W'(Q) _ H_o s VsR(Y)
dy? = E Pm = Ps =V ~- 1-F, (y) x (¥)
_ (Cs _Vs)fx M,
iy b0
__H_ . _Cg=VsFy(Yy)
= E Pm — Ps —Vm TICE(Y) F () x (¥)
_ (Cs _Vs)fx (y)
1-Fx (y)
= - Rl b s )
X

=-fy (Y)(r ~Pm ~ Ps ~Vy _Vs)<0
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as r>py+pstvstvs.
So, Mu(y,W1Q)) isconcaveiny and thefirst order condition is sufficient for optimality. The
first order condition is given by,
dn W' -C
M(y (Q))=0<:> Fx(y) pM pS SE@ y*zyl
dy B’ Pm — ~Vs

The manufacturer’s optimal choice is the same as that of a central-decision-maker. The

supplier is indifferent to its capacity choice from above, so it is willing to invest in this capacity
also. The supply chain is completely coordinated. The manufacturer captures the total expected
supply chain profit as the supplier’s expected profit is zero.

Note that one can induce the supplier to chgpbg introducing an arbitrarily small quadratic

penalty into the wholesale price schedule.

Lemma 23:

In theN supplier exogenous wholesale price game, the manufacturer and suppliers choose

their capacities to b, *=yg*=...=ya*=min{ya"" (Wi, .. Wn),Ym(Wro)}-

Proof:

SupplierN never chooses a capacity larger than the supg@iEs capacity choice, as its total
sales are limited by the this capacity. From Lemma 3, supybegorofit, Msy(yn), is concave
with the maximum achieved wdy(Wn). Foryn<ys(wn), Ms(yn) is increasing ity. Therefore, if
supplierN-1 announces a capacityyaf;, then supplieN chooses a capacity oin{ yx.
uYsn(Wh)}. SupplierN-1 therefore does not choose a capacity largeryhé@m). Repeating this
argument for supplied-1 through 1, the suppliers choose their capacities equal to
min ym,Ysi(Wi), ... Ysn(Wn)}, whereyy is the capacity announced by the manufacturer. From
Lemma 2, the manufacturer’s profity(y), is concave with the maximum achievegtvro).
Fory<yw(Wro), Mu(y) is increasing iry. The manufacturer does not choose a capacity larger than
the suppliers would be willing to choose. Therefore, the manufacturer chooses its capacity,
ym*=min{ ym(Wror) Y1 (Wi),....Ysn(Wn)}. The suppliers then choose their capacities such that

Ysr*=... =Yan* = mMin{ yu(Wrot) Ysi (W), ... ysu(Wn)}. - By definition ys™ (wi, ..., W) =ming{ ysn(Wn).

min
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Lemma 24:

crit

(1) ym(Wro)=y1*, the coordinated channel capacity, iff w;, =wg, , where

Tot Tot Tot Tot Tot
)+(CM _VM)p TCuVs —VuGCs
Tot _ Tot

Wcrlt (r ~ Pw )(C

Tot —

Cy —Vy *+C.

crit

and ywm(Wro)2y* iff Wi < Wry

crit

(i) Ysn(Wo)=y* iff w, =w" where

( Tot Tot Tot

~Pm ~ Ps )(Csn _Vsn)"' p%(CM ~Vm +CTOt

Cy —Vy +C&& -

crit _ ) CS(VM +V )+VS(CM +C1—Ot)

n

Tot
Vs

cr|t

and ys(Wn) 2y/* iff w, = w;
N
(iii) ZWﬁm = Wrgp

(iv) Complete channel coordination occurs iff wy=w,"" n=1,... N.

Pr oof:

= - C * _ - C o
(i) Yy (Wygy) = Py M E y, = Fxl%gwherew:r—wm—pm m=r-pu-ps'
M~ VM |~V

C=Cy+ps'?, andvi=vy+vs . So,ym(W)=y,* iff

mwl -cy H.Hm —¢ E

M~ Vm Hml Vv

or,

(r _ pM )(CTot VTOt) + (CM _VM ) pTOI + CM VTOt _VM CTOI
Wror < Cy —Vy + c:Tot Tot
M

(ii)

Vs, (W”):F_E.:—H yi —F‘l%awheremsq—wn Pn. SO.ys(W)2y* iff
s,

H™s, ‘\C/Sh %Fm E

TOt

or,

Tot _ TOt Tot

. (r=pu = Ps )Cs, —Vg )+ Ps (Cy —Vy +C )= Cq (Viy +V2 Tot

)+Vvg (Cy +C

n-— _ Tot _\,Tot
Cuy —Vm tCg Vg
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Nr=py - p-srm)(csn _Vsn)+ Ps, (Cy —Vu "'C-srot _V-srot)_cs1 (Vu +V-sror)+Vsn (Cy +C;—m)H

- 20 vy O 0

" T T Nt T
(r = py)(ce” V&™) +(Cy —Vy )P +Cy Ve =V Ce” _ wert

Tot Tot - ot
Cy —Vm +C7 — Vg

(iv) Complete channel coordination occurs iff the supply chain capacity choiceisequal to y*.
In other words, from Lemma 37, one needs min{ ys(Wi),..,Ysu(Wn) ,Ym(Wro) } =yi*. Thisistrue
iff (&) ym(Wro)2yr*, (b) ys(Wn)2y*, n=1,... N and (c) one of the inequalities in (a) or (b) to
hold with equality. From (i) abovgyu(wre)2y* iff Wraswio . S0 (a) holds iffvraswry™™.
From (i) aboveys,(Wo)2y*, n=1,... N iff w2w,"" n=1,...N. So (b) holds iffv,2w, "
n=1,...N. Therefore, using (i) above, (a) and (b) both holdiftw,"" n=1,... N and

crit crit crit

Wro=Wrot . HOwever, if somev,>w," ", thenwe =Wt
be if (a) and (b) both hold. Therefore (a) and (b) both hold#v."" n=1,... N, which

crit

iff some othem,<w,". This cannot

implieswr=Wry . For these wholesale prices the inequalities in (a) and (b) all hold with

equality so (c) holds.

Lemma 25:
In theN supplier wholesale price game, if(K) satisfies the concavity condition, then
(i) The manufacturer’s expected profit as a function of the suppler 1 wholesale pRfg(w),

crit

restricted tg+cg<wsw, ", is a strictly concave function.

(ii) The optimal wholesale priceg* are strictly less tham,“™, n=1,...N,

(iii) The channel fails to be completely coordinated.
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Pr oof
(i)
Yg (W)

My (W) = —c, Ys (W) +(r = py =G, (W) IXfx (X)dx

Yg; (W)

+(r = pu —G (W) ys(W)[1-Fx (Ys (W)] + vy, I[ Ys (W) = X] fy (X)dx

Taking the derivative with respect to w,

dnl\N/I(W)_I:PySL(W) o _ I )
dw  H dw E‘r P = G(W) =y ) = ( = Py =~ G(W) =¥y )Fi (v (W)

Yg, (W)

~Ay IXfx (X)dx=A,ys (W[1-Fy (ys (W)]

Taking the second derivative,

d’npy (w) _Hd®ys (W)

g(r ~ Py = G(W) = Cyy ) = (F = Py = G(W) =V )Fy (¥ (W))])

dw? H dw?
s, (W) s, (W)
—2A ZW %l' Fy (ys (W] =(r = py =G(W) —vy) fx (ys (W) ZW g
Now,
(i) From Lemma 4(ii), M >0
dw
y . . . d?ys (W)
(i) As Fx(x) satisfies the concavity condition, then <0

2

(ii1) r>w+pytcy in the alowable range for w,
(iv) cv>vm

(V) Fx(ys(w))<(r-pm-G(w)-cm)/ (r-pu-G(w)-vin)<1
(vi) A>0

Using (i)-(vi), dzn—w <0
(ii)
ysl(me)

L=ty (k=g ()L~ F (v ()] <O

dW W:V\f it
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As MMNy(w) is concave function, w* must be strictly less than w,“™. The optimal wholesale
price for supplier 1isw,*=w*. The optimal wholesale pricesfor w;,...,wy, are given by
T (W) =wr*, n=2,...N. T"y(w,) is a one-to-one mapping such thatw,)=ys (T 2(Wy)). T (W)

crit

crit :chrl'[. AS W1*<W1 ,

is strictly increasing inv’. ys,(Wi™")=ys(W,""), thereforem™,(w,"™)

wr<w " n=1,...N.

(i) From Lemma 38(iv), the channel is only coordinated#w,™" n=1,... N. Therefore, the
channel is not completely coordinated when the manufacturer sets the prices to maximize its

expected profit

Lemma 26:
() If Bs<(r-c)/(r-v), then a central decision maker would invest in either medium or large
capacity, investing in medium capaciti(c-v)/(r-v) and in large capacity otherwise.

(i) If Bs<(r-c)/(r-v) andp.<(c-v)/(r-v), then a quantity premium price scheduleaphy*) induces

Bs

S

the supplier to invest in medium capacity, whare = Ec—v) . Furthermore, the

channel is completely coordinated and the manufacturer captures all the expected supply chain

profit.

(iii) If Bs<(r-c)/(r-v) andP_>(c-v)/(r-v), then a quantity premium price schedulech* A, *)

induces the supplier to invest in large capacity, whgtds given above and

A*L — Hl_ﬁL _ ,85
HB  1-5s

manufacturer captures all the expected supply chain profit.

Ec—v) . Furthermore, the channel is completely coordinated and the

Proof:
() Let IN,(K) denote the expected profit obtained by a central decision-maker that invests in a
capacity ofK. Then,

M, (S)=-cS+rS
M, (M) ==cM + Bs[rS+v(M - 9)]+ (1~ Bs)rM
M, (L) =—cL+ Bs[rS+v(L-9)]+ By [TM +v(L -M)]+ B, L

A central decision-maker does not invest in small capadity(W)>1,(S).
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M,(M)>T,(S) = —cM + Bg[rS+V(M - S)]+ (@1~ B)rM > -cS+rS
r-c
N <——
Bs -y
If Bs<(r-c)/(r-v), then a central decision maker investsin either medium or large capacity. For
thisrange of s it investsin medium capacity iff M1,(M)>I1,(L).
n,M)>n (L) = c(L=-M)+(Bs+By)V(L-M)+ B r(L-M)<0
c-V
< ﬁL <—
r-v
(i) Let the manufacturer offer the following quantity premium price schedule, (c,Au,AL). Let
M4K,c,Au,AL) dencte the expected profit obtained by the supplier if it investsin a capacity of K,
for this price schedule.
Mg(S,c,Ay,A ) =-cS+cS=0
Mg(M.Cc.Ay,A)=—cM +B5[cS+V(M = S)]+ (1~ Bs)[cS+(c+4,, )(M -9)]
Mg(L,CAy,A ) =~CL+ Bs[cS+WU(L -]+ B, [cS+(c+Ay, )M =) +V(L-M)]
+B[cs+(c+a,)M =9 +(c+A,, +A)(L-M)]
=(r=v)M =(c-V)B=Bs(r =v)(M =) + B, (r -v)(B-M)
The supplier prefers (or be indifferent to) M to S if Mg(M,c,Au,A)2M S c,AumAL).
Mo(M,cD, A, )2 M(S,CD, A, ) = Ay, = %Ec—v) >0
~Ps
The supplier prefers (or be indifferent to) L to M, if Mg(L,c,Am,AL)2Ms(M,C,AumAL).

MNg(L,c,Ay,A)2Mg(M,c,Ay,A) = Ay +A, z%‘%%e—v)
L

- ALZEH,_BIBL —1_[71; Ec—v)zo

If Be<(r-c)/(r-v), Be<(c-v)/(r-v) and the manufacturer offers a quantity premium price schedule

of (c,Auw*,0), then Mg(S,c,Am,0)=Mg(M,c,Anm,0)>M5(L,c,An,0), and the supplier invests in medium

capacity. A central decision-maker would also invest in medium capacity and thus the channel is
completely coordinated. The manufacturer’s expected profit is given by,
M (M.C.Ay A = Bs(r ~0)S+A- Bo)|(r ~0)S+(r e =& )M - 9)]
= —cM + B5[rS+v(M - )]+ (1- Bs)rM
=M, (M)
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and thus the manufacturer’s expected profit is the same as the total expected supply chain profit
obtained by a central decision-maker. The manufacturer can do no better than this and is thus this

quantity premium price schedule of4g?,0) [or (cAw*)] is optimal for the manufacturer.

(iit) If Bs<(r-c)/(r-v), B.=(c-v)/(r-v) and the manufacturer offers a quantity premium price
schedule ofdAv*,AL*), theng(Sc,Av*, AL %)=M4c,Av*, A *)=Mc,Au*, A%), and the supplier
invests in large capacity. A central decision-maker would also invest in large capacity and thus
the channel is completely coordinated. The manufacturer's expected profit is given by,
My (LG Dy A = Bs(r —0)S+ By | ~0)S+(r —c -8, )M - S)]
+B [ -9S+ (1 —c-8, )M -9 +(r —c-8, ~£)(L-M)]
=(r=-vIM =(c-Vv)B=Bs(r =v)(M =) - (1-B.)(r -v)(L-M)
=My (L)
and thus the manufacturer’s expected profit is the same as the total expected supply chain profit
obtained by a central decision-maker. The manufacturer can do no better than this and is thus this

quantity premium price schedule off*,A *) is optimal for the manufacturer.
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5.2 Appendix 2
This appendix contains proofs of the lemmas from Chapter 3.

Lemma 1:
(i) A lower bound for the minimum shortfall in problem P1 is given by problem P2,

n%u{z¢—pwu§ S o)

1joPF(LY)
subject to
(M O{OL....1}
(L, nL, =0 0Ok#K
K
(iyL, =™
k=1
(i) If either the number of stages K or the number of products | islessthan three, then the
minimum shortfall in problem P1 is equal to the lower bound in (i).

Proof:
(i) Plisgiven by,

|

min{y s}

XS 0=

subject to

1. Z X +s =d, i=1...1 k=1..K
JOIPR(i)

2. Z X < cf ji=1...J, k=1..K
i0Qx()

X,5=0

Let 77 be the dual variables for the Type 1 constraints and ,ukJ be the dua variables for the
Type 2 constraints. Letting |}<j:—,uk,- gives us the following dual problem D1,

Max (5 5 7 -5 5 vic)

1=1

subject to
K
1. Tl i=1,..,
2. sV jOP () i=1...1 k=1,..K
3. =20 , v=0

Let C bethe set of solutionsto D1 that meets the following two conditions,
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(i) =m0 O{01

o . ‘-
(ii)vjk _ A if m, —.1 forsomei 0 Q"(j)
%) otherwise
Each element in C isafeasible solution to D1.
Let E bethe set of feasible solutionsto P2. A feasible solution (M,L;,..,Lx) to P2 hasthe

following objective value,

K k
>d - Z Ci
iom =1 jopR (LK)

There is a one-to-one correspondence between elementsin C and elementsin E; each element
in C has a corresponding element in E with the same objective value and vice versa. To seethis,

consider an element (M,L,,..,Lx) of E. This can be mapped into an element of C asfollows. For

k=1,...Ksetm =10i0L,, 7 =0 0i0L,v =10jOP“(L,) andv =0 OjOP(L,).

The objective value this element©fs,

K K K
d - ci=%d - c
gliDL gljmp () : iDzM =1 joPR (LK) :
This is the same as the objective value fojL(,..Lx). Similarly any element oE can be

mapped into an element Bfby setting, to be the set of all produdtsvith 77 =1 k=1,... K.
Note that because of the Type 1 constraints, at mostzbrean equal 1 for eadkl,...J, so that
L. nL, =0 0Ok #k . Again the objective value of this elemen&ois equal to the objective

value of the element @.

Therefore, each feasible solutionR2 corresponds to a feasible solutiorDxb. The objective
value of such a solution gives a lower bound on the optimal valDé&,@nd hence from duality a
lower bound on the minimum shortfall objective valuétdf The optimum value tB2 is the

maximum such lower bound.

(i) From duality, the optimal solution 8l must equal the optimal solution®d. From part (i),

P2 gives the optimal solution 1 subject to,

() =, O{0,1}
. _if 7 =1 forsomei 0Q"(j)
vy = %) otherwise

If the optimal solution t®1 can be shown to satisfy both (i) and (ii), thhgives the optimal
solution toD1 and hence the optimal solutionRa.
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Let (TLv) be afeasible solution to D1 such that some v;*>1¢“ 0 i0Q'(j). The objective function

can increased by decreasing v until v = max {77} without violating any constraint.
i0Q ()

Decreasing v any further violates a Type 2 constraint. Therefore, an optimal solution must

satisfy v{* = max{7;*}. Assume for the moment that the optimal solution to D1isbinary, i.e.
i0Q (1)

satisfies condition (i). Then, condition (i) must hold as vi* = max{7‘*}.
0o ()

All that remains to be shown is that the optimal solution to D1 isbinary. Substitute
y{ =1-v into problem D1. The following problem D2 is obtained.

K | K Jk K Jx

Max 'd. + kek — c~
{;Zl P g, gllzzly, i ;le,
subject to

K
1. m<l i=1,...,

=1
2. m+y <l jOP() i=1..0 k=1..K
3 yi <1 j=1....0, k=1...K
4, =0

If yjk is negative, then the Type 2 constraints in which it appears are satisfied with strict

inequality because from the Type 1 congtraints 77 <1. Set yjk to zero. This solution remains

feasible. The objective functionis strictly increased. Therefore D2 can be restricted to
y = 0O without any affect on the optimal solution. The upper bound constraints on the y variables

(Type 3) can beignored as the non-negativity of the = variables along with the Type 2
constraints ensure that the y upper bounds are not exceeded. Therefore D2 can be solved by the

following problem D3,
K Jk

Max {3 5 md +5 5 yici =5 5

™y k=11=1 k=17)=1 k=1)=1

subject to
K
1. <1 i=1...1
2. mf+yi<l jOPG) i=1..1 k=1...K
3. >0, y=0

Let A bethe constraint matrix of the linear program D3. A isthe clique matrix of the

undirected graph G, in which the Ttand y variables are nodes. Figure 1 shows an example of the

graph G.
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STAGE 1

Nodes: 7Ti-1 ., Nodes: yljzl,...,ll
STAGE 2

Nodes: 7fi-1 .| Nodes: yzjzl,...,lz
STAGE K

Nodes: 7=, | Nodes: ij:l,...JK

Note: The (7,7¢;) arcs are only shown for i=1

Figurel
The Constraint Matrix A isthe Clique Matrix of the above Graph, G

A 1 variableis anode for product i at stage k and a yjk variableis anode for the j™ plant of
stagek. Anarcjoins 77 to yjk 0jOPX(i), i.e. the product nodei at stage k to al plants that can

process product i at stage k. For each product i, thereisan arc (77, 1) from node 77 to 71

k'>k, k=1,...K. In other words ther variables for produdthave arcs to all othet variables
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for product i. Note that | use the convention that (77, 77') arcs always have the smaller k value
asthefirst node of thearc. There are no arcsjoining the = variables of two different products.
The 71 k=1,...K for each produdtform a clique as does eagtf to y! arc.

If the number of stagds§ is less than three, théhis a bipartite graph. To see this, group all
i and y? nodes in Set 1. Group aif* and y; nodes in Set 2. The only arcsGrare those
joining a node in Set 1 to a node in Set 2. GAis bipatrtite, it is a perfect graph (Nemhauser and
Wolsley, 1988).

If the number of productsis less than three, then the graph G is again perfect. The proof of

for this case is a little more involved and is most easily understood by referring to Figure 1.

= Consider a cycle with norf, 7)) type arcs and nort; , 7z, ) type arcs. This cycle must
contain only ¢z°, yjk) type arcs for a single stage Such a cycle must have an even
number of arcs as each stéigesubgraph is a bipartite.

= There is no cycle with exactly oner(, 77') type arc and nozt} , 7z, ) type arcs as such a
cycle would leave the set af nodes for stagk and never return. Likewise there is no
cycle with exactly onef; , 7z ) type arc and nost , 7z ) type arcs.

= Consider a cycle exactly onarf , 77,*) type arc and exactly onerf? , 77.2) type arc,

where the subscript on the stdggenotes the producto which it refers. We must have
ki=k, andk;'=k;’ as otherwise the “cycle” would leave the setrohodes for stagk; and
never return. Clearly this would not be a cycle. Any cycle in wkiek, andk;'=k’

must have an even number of arcs.
Therefore, any cycle that contains no more than agie; ) type arc and no more than one
(7rs 1) type arcs must have an even number of arcs. So any odd length cycle must contain at
least two (7, 77¢) type arcs foi=1 or 2. Consider a cycle containing at least twb, (7 type
arcs. The only clique of grag that contains 7, 77') arcs is the cliquésn, 777,..., 1} . This
clique contains all suchv*, 77) arcs and therefore contains another arc of the cycle. Therefore

from Theorem 5.17 of Nemhauser and Wolsley (1988), the @dplperfect.

So if either the number of produé&sor number of stagdsds less than three, thé&his a
perfect graph. Therefore the polyhedron defineB®YAx<1) is integral. The optimal solution
to D3 is thus integral. In fact it is binary, because of the right hand side values. This in turn

implies that the optimal solution @1 is binary.
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Lemma 2:
(i) For any subset of products, M, define the problem P3(M) as

K
. k
Mint> ¢

JOPFLY)
subject to
()L, nL, =0 [Okzk

(ii)LKJLk =M
k=1

If for every possible M, there exists an optimal solution to P3(M) with only one non-empty L*,

then a stage-spanning bottleneck can never occur in this case.

(i) If A, 2

T :
C ,where A, = Min { } cf}andTC,,, = Max {TC,} ,thenastage-
2 O R S 0) KK
spanning bottleneck can never occur. Note that A, is the minimum total capacity available to
any product at any stage and TCo iS the maximum total stage capacity across all stages.

Pr oof:

(i) Let d={d,,...,d} be any demand realization. Lt be the optimal M set for proble2
given this demand realizati@h If for every possible subset of produdis,there exists an
optimal solution tdP3(M) with only one non-emptl,*, then for the optimal sel* there exists
an optimal solution t&3(M*) with only one non-emptl*. P3(M) is the internal minimization
in P2 and therefore iP3(M*) has only one non-empty*, thenP2 has only one non-empty*.
By definition a stage-spanning bottleneck does not occur for this demand realtafidms is

true for any demand realization and so a stage-spanning bottleneck can never occur.

(i) For any subset of productd, let A(M) be the set of stages with non-embpg¥, whereL,*
are the minimizing sets iR3(M), subject to there being at least two non-entpty Then
A(M)[]=2.

K

k
; |2 0+ Ann 2 2A,
=1 0P (L)

KOA(M)  KOA(M)
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K
Construct aset of Ly, k=1,..K, asfollows. Set L|* = JL, and Li* =0, k=2,...K. The
k=1

objective value of this new set bf is bounded above BYC, the maximum total capacity of
any stage. A3C,»<2Anin, then the new set has an objective valudB{iM) at least as small as
the originalL* set, and from part (i) a stage-spanning bottlenecks never oCEOAE2A .

Note that if one defines asrstage-spanning bottleneck as one in which there are eiactly
non-emptyL*, then one can adapt the above proof directly to show that such a bottleneck can

never occur ifTCuSNARN.

Lemma 3:

If a supply chain igl,i-type, then (i) a stage-spanning bottleneck can never occur if the total
number of productd, is less than or equal Bg,,,. Furthermore, if at each stage each individual
product is connected to the same total capacity, then (ii) a stage-spanning bottleneck can never
occur if the total number of productsjs less than or equal todg2{,+1)

Proof:
(i) Let WK(L,) be the total capacity available to a sulhgeif product at stage As each stage
has ag-type configuration withge=grmn, thenW(Ly)=0 iff L={ 0} and
WK(L)=min{ TCy, (L +gmin-1)Ci} iff Liz{ 0}, where as defined earlidiCy is the total capacity of
the stage an@,=TC//I. AsTC,is the minimum total stage capacity;,=TC, andC,2Cn,
thereforeW(Ly)=min{ TCuin, (Ll +Gmin-1)Cmin} iff Liz{0}. For any subset of products, let
A(M) be the set of stages with non-embpi¥; whereL* are the minimizing sets iR3(M),
subject to there being at least two non-enity Then N(M)[22. For this set df,*'s, the
objective value foP3(M) is given by,
21 jDPZ(L;T > km%\!:/k(L;) + kul%yyk(L’[() > » M*)min{TCmin,(L];‘ + Gpin —1ktmin}
(L3.1)
As thelL* are non-empty for akzOA(M), then L*|=1 for allkOA(M). Therefore,
K
> 2 ck 2 km% [r)lin{TCmin +9isCrin}
>2minfTC_ .9...C...}
> min{TC,;,29,::.Curin}
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Without loss of generality, assume the first stage has the minimum total stage capacity.
K
Construct anew set of Ly k=1,...K, as follows. Set{* =| JL, and Li*' =0, k=2,...,K. The
k=1
objective value of this new set bfis bounded above ByCn, the total capacity of stage 1. If
TChin<20minCrin, OF alternatively}<2gyin asTCin=ICmin, then the new set has an objective value
for P3(M) at least as small as the origihgt set. Therefore for every possilg there exists an
optimal solution td?3(M) with only one non-emptl,*. Following Lemma 2(a), a stage-
spanning bottlenecks can never occug#g,,.
Note that if one defines dd-stage-spanning bottleneck as one in which there are ekactly
non-emptyL*, then one can adapt the above proof directly to show that such a bottleneck can

never occur if<Ngin.

(i) If Le* and Ly * are non-empty with Ly *={i}, i.e. it contains exactly one product, set
Lk'neW:Lk'* OLe* and Ly new:{ D} . Then,

cl < 3 i+ > ci = 3 i+ > c!

JOPE (L) J0P (L) JOPY (i) JOP (L) joP (L)
where the equality occurs because at each stage each individual product is connected to the same
total capacity. So, anew set of Ly can be constructed with an optimal value to P3(M) at least as
small asthe original optimum. Thisistrue for any |L*|=1. Therefore any optimal set for P2 with

new;

N>1 non-empty L* can be transformed into anew optimal set with N-1 non-empty L,"“"if some
|L*|=1. Repeat this process until al non-empty L * have [L* [22. So, |L¢* |22 for any stage-
spanning bottleneck. Substituting thisinto (L3.1) yields alower bound of 2(gmint1)Crin. The rest
of proof follows as above.

Note that if one defines an N-stage-spanning bottleneck as one in which there are exactly N
non-empty L*, then one can adapt the above proof directly to show that such a bottleneck can

never occur if ISN(gmint1).
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Lemma 4:
If asupply chainis agmn-type and has the following properties,

(i) each stage has atotal capacity of at least the total expected demand

(i1) the demands for the | products are independent and identically distributed N(u,0)
then the probability of any particular LB stage-spanning bottleneck is bounded above by

-
R

From Section 3.3.1.1, an upper bound on the probability of (M,L4,...,Lk) being a stage-

Qs(l,Gmin), Where,

Q(I vgmin) = CD
Pr oof:

spanning bottleneck is given by,
Qs(MLy,... Ly) = [1' CD(Zl)]CD(Zz)
where

chj(n _'% Hi TCphin — Z ZC;(H _A% Hi

=L jop*n (1
J (L) and22=
%7 %7
i i

and thelN stages with non-empty, are denoted blg, ... ky

From Lemma 5 below, as each stage in the supply chaindieslae greater than or equal to

Omin, then
QsML,....L) = [1' CD(Zl)]CD(Zz)S [1' ¢(y1)q)(Y2): Qs (XN, 1, 9min)

where,

Corin (X + N(g i = ;’M

2°

Cmin (I -x—=N gmm - ;':ul

%°

andx is the number of products M, i.e.x=|M| andC,,, is equal torC.,/I, whereTC,, is the

Y1 =

Yo =

minimum total stage capacity.
As the product demands are iid, then,
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y, = Cmin(X+ N(gmin _1))_ XU — N(gmin _1X:min + X(Cmin —,U)
! ox ox

— Cmin (I ~ X~ N(gmin _1)k_(| —X),U — (I _X)(Cmin —,U) - N(gmin _1xmin

V2= g./(l —x) g+/(l —=X)

Qs(X,N,1,0min)=[1-P(y1)] P(Y,) provides an upper bound on Qs(M,Ly,...,Lk), which itself is an

upper bound on the probability thd,(,,...,Lx) is a stage-spanning bottleneck. Note that this
upper bound does not depend on the adfusét and_, subsets, only on the number of products,
X, in M and the number of non-empty subsetsN. As such it is valid for anyM,L;,...,Lx) for
which M|=x and for which there afd non-emptyL subsets.

By maximizingQs(x,N,I,gmin) over all possible for which there can bl non-emptyL
subsets, the dependenceXy{x,N,l,gmn) onx can be removed, to gies(N,l,gnmin), @an upper
bound on the probability of occurrence of any particular stage-spanning bottlenebkneith
emptyL, subsets (in a supply chain that processes | products and thaj-kakia ofg.;,). From
Lemma 6 belowy, the number of products M, must be less than or equal d(gmin-1)-1, if M

is to be a stage-spanning bottleneck Wthon-emptyL, subsets. Therefore,

QS(NvIvgmin)— N(lax_ {QS(X N I gmln)} {[1 (D(yl)q)(yZ)}
Imin=D-L <I- N(gmn !

If the minimum total stage capacity equals the expected total demand,.thequals the
mean product demand, p, and the maximum occurs at x*=1/2, assuming thdf2>N(gyir-1)+1. In

this case,

= HN - %DH—N - H El—N( 1)52
Qs(NJgpy) = d-® (O Omin Omin ~ L
B e

(L4.1)

Note that af25(x,N,l,gmin) is decreasing in &, (L4.1) provides an upper bound on
Qgs(N,1,gmin) for any G,=u (i.e. any supply chain in which the minimum total stage capacity is
greater than or equal to the total expected demand).

Qs(N,1,gmin) is decreasing i, i.e. Qg(2,1,0min)>Qs(N,1,0min) ON>2. By definition a stage-
spanning bottleneck must have at least two non-elmysybsets, that N>2. Therefore,
Qs(2,1,0min) gives and upper bound on the probability of occurrence of any particular stage-
spanning bottleneck, regardless of the number of non-dmptybsets. So, setting

Qs(1,0min)=Qs(2,1,gmin) proves the lemma.
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Note, if oneisinterested in the probability of occurrence of an N-stage-spanning bottleneck,

then Qs(N,1,gmin) provides an upper bound on this probability.

Lemma5:
If each stage in the supply chain has a g-value greater than or equal to gyin, then

QsM,Ly,... Le) = [1' (D(zl)]qb(zz)s [1' q)(y1)¢(y2): Qs(XN,1,9mn)

where,

Cmin(X+ N gmm - %/’4

Cmin(I X= Ngmln_ ;M

2°

and x isthe number of productsin M, i.e. x=|M|. C,isequal to TC,/I, where TC, iS the

Yo, =

minimum total stage capacity.

Proof:

Let WX(L,) bethetotal capacity available to anon-empty subset, Ly, of products at stage k. As
each stage k has a g-type configuration with ge=gmin, then from equation (11)
WKL)=min{ TCy, (JLi[+Grmin-1)Cid . AS TCrin i the minimum total stage capacity, TC,=TCpin and
Ci>Chrin, therefore WL, )=min{ TCuin, (|Li*+Grmin-1)Crin} . From Lemma 6 below, the number of
productsin M, must be less than I-N(gmin-1), if M isto be a stage-spanning bottleneck with N
non-empty L, subsets. For each non-empty subset Ly, n=1,... N, LLul<M|<I-N(grin-1).
Thereforel|+gmin-1<l and (Lu|+t0min-1) Crin<TCriin, SO Min{TCy, (|L|+9min-1)Ci}=(| Lin|+Orin-
1)Crin. Therefore W{(Lin)2(|Lin|+Gmin-1)Cuin for n=1,...N. So,

impz(: )" = ZWK" (L) Zi [(Lkn‘ * Oriin _1kmin]: QM | + N(gmin _1)kmin

Let M|=x. Therefore

N
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TCmin—Z ; )"‘Z”' TCo cm.n(x+N(gm.n—1))-i%ﬂi

iOM

<
;ai zgi
i oM

Cmin(l -x=N gmm - %/4

as TCin=ICpin. Now,
Qs(ML,... L) =[1-0(z )lo(z, ) < [i- o (y, )]y, ) = 25 (XN, 1 i)

asyi<z, ¥».=z, and d(2) isincreasing in z.

Lemma 6:
If asupply chainis gmin-type, then a stage-spanning bottleneck with N non-empty L,* and

[M* [=1-N(gmin-1) can never occur.

Proof:

Let (M*,L.*,...,Lc*) be an LB stage-spanning bottleneck witmon-emptyL,* and M*|>1-
N(h-1). LetW(L) be the total capacity available to a suthsetf product at stage As each
stagek has ag-type configuration withggmin, thenW(L,)=0 iff L={0} and
WKL)=min{ TCy, (L|+gmin-1)Ci} iff L{ 0}, where as defined earlidiCy is the total capacity of
the stage an@,=TC,/I. AsTC,is the minimum total stage capacity;,=TCin, andC,=Cpyin,
thereforeW(L)=min{ TCuin, (Ll +Gmin-1)Cmin} iff L&{O}. Let A(M*) be the set of stages with
non-emptyL*. The objective value faP3(M?*) is,

2 W (L )+ wk (L )
ZIDF' (Lk) ‘ z

kD/\(M ) KOA(M ")
Z mln{TCmmquk‘-}'gmm 1k:m|n}
KOA(M")
> mlnETCm,n, NLK‘ *+ Opmin ‘1)3min]%
kD/\(M B =

= mln{TCmm,ql\/l ‘+ N (9 —1))3mm}
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Without loss of generality, assume the first stage has the minimum total stage capacity.

K
Construct anew set of Ly, k=1,..K, asfollows. Set Li* =| JL and Li** =0, k=2,...K. The

k=1
objective value of this new set bfis bounded above ByC,n, the total capacity of stage 1. If
TChin<(IM*|+N(gmin-1))Crin, then the new set has an objective valud’B{M) at least as small as
the originalL* set. Therefore for every possilg there exists an optimal solutionR8(M)
with only one non-empti,*. Following the addendum to Lemma 2(i) regardivkgtage-
spanning bottlenecks, TCi<(|M*|+N(gmin-1))Crin, then a stage-spanning bottlenecks \Wth
non-emptyL* can never occurTC;,=IC» and therefore a stage-spanning bottlenecksMith

non-emptyL* can never occur il<|M*|+N(gmin-1).

Lemma7:

For a two-stage 4-product supply chain with each stage having 4 plants anth==2tgbeain
configuration, and all plant capacities being eque), (i the product demands are My, 0),
then the probability that the stand alone shortfalls for the two stages are the same is greater than

or equal to,

1- o ol PG o W soly Eo P el

Proof:
Let SF denote the random variable for the shortfall for sta¢e1,2. For a given demand
realizationd,,...,d;, letm* be the maximizing set for,

d - Zc,.k}

ithmy joP*(my)
subjecttom O {1,...,I}

max{
M

and letsf, be the optimal value for stagek=1,2 (i.e. the shortfall for this realization). Let the

indicator function;, be such thait,,=0 if m*=m, andl =1 if m*zm,. Ascli=c?, j=1,....J,

sfi#sf, only if m*#£my*. Therefore PE-23-,]<P[l,=1]. Because the demand distribution is

continuous the probability thtd,*#M,* and S-,=SF, is zero. Therefore in this case,

P[SF#S-,]=[l1,=1]. Note that the upper bound in the lemma is still valid §2S-,]<P[l,=1].
The only possible chains for a 4-product 4-plant stage are {1,2,3,4}, {1,2,4,3} and {1,3,2,4}.

Let stage 1 have a {1,2,3,4} chain and stage 2 have a {1,2,4,3} chain. For any demand
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realization, the possible m;* setsare{0} {1} {2} {3} {4} {1,2} {2,3}, {34} {4,1} {1,2,3,4} and
the possible m* setsare {0} {1} {2} {3} {4} {1.2},{2,4} {34} {1,3} {1,2,3,4}. Theeventsin

which 11,=1 (my*£m,*) can be partitioned into the following mutually exclusive (and exhaustive)

events:

Event 1. m*={0} nm*#{ 0}

Event 2: m*2{ 0} nm*={ 0}

Event 3: m*={1,2,3,4} nmy*#£{ 0} nmy*#{ 1,2,3,4}

Event 4: me2{ 0} nm*#{1,2,3,4} nm,*={1,2,3,4}

Event 5: my*={i} nmy*£{i} nmy*#£{1,2,3,4} nmy* {0} i=1,2,34
Event 6: (m*={1,2,34y0my*={0})nmy*={i} i=1,2,3,4

Event 7: (@) m*={1,2} n(my* 0{ 1,3} 0{ 3,4} 0{ 2,4})

(b) m*={2,3} n(my* 0{ 1,3} 0{ 3,4} 0{ 2,4} 0{ 1,2})
(c) m*={3,4} n(my* { 1,3} 0{ 2,41 {1,2})
(d) m*={4,1} n(my*0{ 1,3} 0{ 3,4} 0{ 2,4} 0{ 1,2})

I now devel op upper-bounds for the probability of each event.

Event 1: my*={0}, m*2{}
my*={0} implies:
d -2c<0 i=1234
d, +d,,-3c<0 i=1234

d, +d,+d;+d, -4c<0
wherei+1=1if i =4. Therefore, the only possible m* (Z{}) setsare{1,3} or {2,4}. For
my*={ [0} and my*={1,3}, the following four conditions are necessary (but not sufficient),
(i)d; —2c<0 i=1234
(i) d; +d,,;, —3c<0 i=1,234
(iii)d, +d; -3c>0
(iv)d, +d, +d;+d, -4c<0
(it1) and (iv) imply that the following is a necessary condition for my*={ ]} and my*={1,3},
d,+d;>3c and d,+d, <cC

Asthe demands are iid N(u,0), the probability of this event is given by,
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Ei
J2o 20

and thisis an upper-bound on P[my*={ 0} and my*={1,3}]. Asabove, it can also be shown to be
an upper-bound on Plm*={ 0} and my*={2,4}]. Therefore,

P[Event1] < 2¢E25_ %EDE" E

Event 2: my*2{0}nmy*={[1}

Using the same derivation as for Event 1, but adapting for Event 2, the same upper-bound as 1

can be developed. Therefore,
1 —3C
tevna) s 0= G- Bu
20

Event 3: m*={1,2,3,4}nmy>* {0} nmy*#{1,2,3,4}
my*={1,2,3,4} implies:
d, +d,+d;+d, -4C>0
d, +d,+d;+d, -4C>d, -2c i=1234
d, +d, +d;+d, -4C >d, +d,,;, —3c i=1234

Therefore, the only possible m* sets ({0} ,#{1,2,3,4}) or are{1,3} or {2,4}.
For m*={1,2,3,4} and my*={1,3}, the following two conditions are necessary (but not
sufficient),
(i)d, +d;-3c>0
(i)d, +d; -3c=d, +d, +d; +d,-4c 0 d, +d, -c<0

Asthe demands are iid N(u,0), the probability of this event is given by,

i Pt

and thisis an upper-bound on P[my*={1,2,3,4} and my*={1,3}]. Asabove, it can also be shown

to be an upper-bound on P[m*={1,2,3,4} and my*={2,4}]. Therefore,

P[Event 3] < 2¢E2i/‘_ %EDEF E
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Event 4 m*£{0}nm*#£{1,2,3,4} nm,*={1,2,3,4}
Using the same derivation as for Event 3, but adapting for Event 4, the same upper-bound as 1
can be developed. Therefore,

P[Event 4] < 2 @255_03(: EDEC _231 E

Event 5: my*={i}nm*Z{i}nm,*#£{1,2,3, 4 nmy*2{} i=1,2,3,4
my*={1} implies
d,—-2c=0
d -2c<d, -2c i=234
d, +d,, -3c<d; -2c i=1,2,34

d,+d,+d;+d, -4c<d, -2c
Canceling terms, then
(i)d,—2c=0
(i) d; =d, i=234
(ii)@d,-c<0 (b)d, +d; -d, -c<0 (c)d; +d, -d, —c<0 (d)d, —-c<0
(iv)d, +d;+d, —2c<0
Therefore, the only possible my* set (#{1},{1,2,3,4} {0}) is{1,3}. my* cannot be ={j}, j#1,
from (ii). my* cannot be {2,4} from (iv). For my*={1} and my*={1,3}, the following conditions
are necessary (but not sufficient),

(v)d, -2c=0
(vi)d, +d;-3c=d, +d, +d;+d,-4c 0 d, +d, —-c<0
(vii)d; +d; -3c=>d, —2c d;-c=0

Asthe demands are iid N(u,0), the probability of this event is given by,
— 2 — 2 —
i a— HDEC H M= CH
0o o o 20 0o 0O
and thisis an upper-bound on P[m*={1} and my*#{1} ,{1,2,3,4},{0})]. The same upper-bound
can be developed for P[my*={i} and my*#{i},{1,2,3,4} ,{0})],i=2,3,4. Therefore,

P[Event5]s4¢Ef’_2°HDE°_2” H=CH
g o [0 20 o Qd
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Event 6: (m*={1,2,3,40m*={0}) nmy*={i} i=1,234
Using the same derivation as for Event 3, but adapting for Event 4, the same upper-bound as 1
can be developed. Therefore,

P[Evente]s4q>E'”_2CHDE°_2” HH=CH
O o O 20 0o 0O

Event 7: (&) m*={1,2}n(m,*{1,3}1{3,4}0{2,4})
(b) m*={2,3}n (my* 0{1,3}0{3,4}0{2,4}0{2,1})
(c) m*={3,4}n (mx* 0{1,3}0{2,4}0{2,1})
(d) m*={4,1}n (m*{1,3}0{3,4}0{2,4}0{2,1})
(a8 m*={1,2} implies

d, —2c<d, +d,-3c i =234

d, +d,+dy;+d,-4c<d, +d,-3c
Therefore my*#{3,4}. Only need to consider my*={1,3} or {2,4}.

my*={1,2} my*={1,3}:
Canceling terms in the above eguations, then
(i)d, +d,-3c=0
(i)®d,-c=0 (b) d,-c=20 (c) d, +d, -d;-c=20 (c) d, +d, -d, -c=0
(iiy(®d,-d;=20 (b) d, +d,-d;-d, =0 (¢)d,-d, =0
(iv)d;+d, -c<0

But, my*={1,3} implies
(v)d, +d, +dy;+d, -4c<d;+d;-3c0 d, +d,-c<0
Using (iv) and (v), then d, +d; +2d, —2c< 0. From (ii)(a) d,=c. Therefore,
(viyc+d, +2d, -2c<00 dy+2d, —c<0.
(i) and (vi) are thus necessary conditions for my*={1,2} and m*={1,3}. Asthedemandsareiid

N(u,0), the probability of this event is given by,

T P
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Thisis an upper-bound on the probability that m*={1,2} my*={1,3}. It can also be shown to be
an upper-bound on m*={1,2} my*={2,4}. Therefore,

P[Event 7(a)] < 20H~— 3” EDEZ E

Events 7(b),(c) and (d) have similar upper bounds. Therefore,
P[Event 7] < 8bE~— 3” EDEZ E

The probability of 1,,=1 (my*#m,*) isthe sum of the probability of the above events. Therefore,

Pll,]< iP[Event n. So

B R R
As, PISF#S,]<P]11,=1],
P, ¢SF]<8¢B25_3C%DE° i/_i“%waﬂ“ Zcﬂbg E'“ CH

and so,

i e R o e R T B

This proof can be repeated for the other possible chain pairings.

256



5.3 Appendix 3

This appendix contains proofs of the lemmas from Chapter 4 and an algorithm for generating
the set of possible stage subsets over which the maximization in Lemma 1 is evaluated (c.f.
Lemma 3).

Lemma 1:

(i) A lower bound on the minimum total shortfall in problem P3 is given by

max { df—;ck}

ATLK) ™ (o

(i) If the path-stage matrix B istotally unimodular, then the minimum total shortfall in problem
P3 equals the lower bound in (i).

Pr oof:

Problem P3 is given by the linear program,

f
Mln{zlsff}
subject to
Ly, +sf, =2d, fOF
2. Yy, <c, k=1..K
fO0PK)
3.y,sf =0

Let 77 be the dual variable for the Type 1 constraints and 14 be the dual variable for the Type 2
constraints. Letting u=-14 gives us the following dual formulation (D3),

Max {%:n'fdf _gvkck}

v

subject to

1 T, <1 fOF

2. T, < YV, fOF
KOQTf)

3. =20 , v=0

Remember that P(A\) isthe set of flow paths that are processed by at least one stage kCIA and
Q(f) isthe set of stages that process flow path f.
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Let problem D4 be the same as D3 but with the additional constraint that the solution be
binary. For afeasible solution (=, v), let A be the subset of stagesk=1,... K for whichvy, =1.

This solution can be optimal only if, =1 Of00P(A) and 7, =0 Of0OP(A), where the second
condition is required for feasibility. To see this, consider a soluti@@to which 7., =0 for
some flow patdJP(A). This solution can be improved upon by setting=1. Thisis a

feasible solution with an increased objective function. Each of the possible optimal solutions is
therefore completely specified by the subsetThe objective value for such a solution is given
by,

d -Sc
f k
f0P(4) kDZA

Any subsef\ of stages 1,..K is a possible candidate for optimality and therefore the

optimum objective value tb4 is given by

max { df—;ck}

ATLK) ™ o

As all solutions td4 are feasible fob3, the optimal objective fdp4 is a lower bound on the
optimal objective value tB3. From duality the minimum shortfall f&3 is equal to the optimal

objective value t®3.

(if) The constraint matrixA, for D3 is given by,

0
S

whereB is the path-stage matrix. The path-stage matrix is the matrix in which there is a row for
each flow path, a column for each stage klapd if KJQ(f) andby=0 if KLQ(f). In other words,
element{k) is 1 if flow pathf requires stagk and 0 otherwise.

A is totally unimodular (TU) iB is TU. This follows from the fact that total unimodularity is
preserved under the following operations (Schrijver, 1987)

(a) multiplying a column by -1

(b) adding a row or column with at most one nonzero, being +/-1.
If Bis TU then-BisTU using (a). Then [l -B] isTU using (b) and A isTU using (b) again.

So, if the path-stage matrix B is TU, then the constraint matrix A for D3 is TU and therefore
optimal solution to D3isintegral. The Type 1 constraints ensurethat 7, <1f OF . No optimal

solution can have any v, >1 asthe objective function can be decreased by settingsuchav, =1
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while still maintaining feasibility. The optimal solution to D3 is therefore binary and thus from

part (i), the optimal objective value for D3 and P3 is given by,
max { % d; - g Cy}
A

A{L..K) )

Lemma 2:
The path-stage matrices for the Alcalde Job Shop and for Work Center A are both totally
unimodular (TU).

Proof:
The path-stage matrix for the Alcalde job shop Bacade iS given by,

1011 o

0

9r0100D

g 311000
Alca]de%.ll()lm
b 112 0 o

0 O
010 of

Total unimodularity is preserved under addition of a column with at most one nonzero, being
+/-1 (Schrijver, 1987). Therefore Bacage is TU if the following submatrix S of Bacade IS TU.

10

O
5
10
10
14

]
15

SisTU if each collection of columns of S can be split into two parts so that the sum of the

wn

I
BOSHORHOR
P P R P OO

columnsin one part minus the sum of columns in the other part is a vector with entries only 0, +1,
and —1 (Schrijver, 1987).

Clearly any collection of two columns 8fcan be split into two such parts as each column
contains only 0’'s or +1's. It only remains to show that a collection of all three columns can be
split in this manner. Assign the first and second column to one part and the third column to the
other part. The sum of columns in the first part is a vector with entries only +1 and +2. The sum

of columns in the second part is a vector with every entry equal to +1. Therefore the sum of
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columnsin one part minus the sum of columns in the other part is a vector with entries only 0, +1,
and -1.Sis TUand thuBBacade IS TU.

The path-stage matrix for Work CenteBf\ca is given by,

O ABCDETFGI KL N PO
EBP 0100000000015
OABP [1 1 0 0 00 00O OO0 0 10
SABFPllOOOlOOOOOlE
BACP 101000000001%
ACFP|1 0 1 0 0 1 00 O 0 O 1f
BZ%ADFPlOOlOlOOOOOlE
“ADADGP|1 0 0 1 0 0 1 0 0 0 0 1O
SADIP 10 01000100 0 1f
ADKP|{1 0 0 1 0 0 0 0 1 0 0 1O
E,ADLPlOOlOOOOOlOlE
SADNP100100000011%
OADP [1 0 0 1 0 0 0 0 0 0 O 1f
HAEP |1 0 0 0 1 0 0 0 0 0 0 1

where | have added the stages and flowpaths for clarity. As discussed in Section 4.3.1., stages
andN refer to the aggregated stag@sndNO. Column vectors are denoted by the associated
stage letter, e.gA or P.

Total unimodularity is preserved under both column permutation and the addition of a column
with at most one nonzero, being +/-1 (Schrijver, 1987). Ther&gtgis TU if the following
submatrixS of Byca is TU.
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~
O

where the columns G-N have been removed and the column order has been rearranged. The

matrix S has the following two properties.

[1] Any collection of columns from { P,A,F} can be split into two parts so that the sum of
columnsin thefirst part minus the sum of columns in the second part is a vector with entries
only O or +1. To seethis P-A, P-F and P+F-A are al vectors with entries only O or +1.

[2] Thesum of any collection of columns from {B,C,D} isavector containing only O or +1

entries.

From [1] and [2], any collection of columns of S can be split into two parts so that the sum of
the columnsin one part minus the sum of columnsin the other part is a vector with entries only O,
+1, and —1. Thereforgis TU (Schrijver, 1987) and thigca is TU.

Lemma 3:
Any subsef\ that can be partitioned into two disjoint subggtsand/A, such that
P(Am)UP(A), can be omitted from the set of subsets over which the maximum in Lemma 1 is

evaluated.
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Proof:
If A can be partitioned into two digoint subsets A, and A, such that P(A,) OP(A), then
P(N\)=P(A\y). Thisimplies

Ydi=%¢, = >d,->c ->c < >d,->c

fOP(A) KTt fOPCy) KT kT, f0PT4 kT,

and therefore A cannot be the optimum in the above maximization.

Algorithm for generating the set L of possible stage combinationsin the maximization of
Lemma 1.

The set of stage combinations (or subsets) over which the maximum in Lemma 1 is evaluated
does not contain every single possible combination of stages. Lemma 3 states that some stage
combinations (or subsets) can be removed. An equivalent statement to Lemma 3 is given by,

If P(N.) LP(A), then A=A, can be omitted from the set of subsets over which the

maximumin Lemma 1 is eval uated.

Denote the set of possible subsets by the set L. By using this version of Lemma3, itis
possible to compare two subsets to see whether the union of the two subsets can is contained in L.
Remember a subset A corresponds to a combination of stages and P(A\) corresponds to the set of
flow paths processed by any stagein A.

This comparison can be done using matrix algebraasfollows. Let P(A,,) be specified by a

row vector
R™ =[]

where the element r{"=1if fO P(A\,) and equals O otherwisefor f = 1,...F. In other words, if a
flow path is processed by some stagénthen the corresponding flow path entry equals one.
Let R" be the flow path row vector féx,. LetR"™ =R"-R™. If R"™ =0, i.e. each element
is non-negative, then RE)OP(A,). Likewise if R™™" =0, then P(\,)OP(\,). An algorithm for
comparing two subsets to see if the union of the subsets can be one of the subsets in L can be
specified as follows.
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ALGORITHM: COMPARE(R",R™)

R"™ =R" —=R"
R™ =ZR™ —R"
IFR™ >0

RETURN FALSE
ELSEIF R™ 20

RETURN FALSE
ELSE

RETURN TRUE
END

The COMPARE(R",R™) agorithm determines whether the union of two subsetsis contained
intheset L. However, we still need to generate the set L. The agorithm for doing thisiscalled
GENERATE L.

This agorithm works as follows. The set L starts as an empty set. All subsets containing only
one stage are then added to L. Next, the possible subsets containing two stages are added to L.

Then the possible subsets with three stages are added, then four stages, etc. up until K stages. At
this stage all possible subsets have been evaluated. If aset with j-1 stages, say /\j.4, isnotinL,
then no set that contains A\.; will bein L. Therefore, when evaluating the subsets containing
stages, one only needs to consider the subsets that are formed by the union of asingle stageand a
subset containing j-1 stagesthat isaready in L.

The algorithm is an iterative algorithm. Each iteration corresponds to the evaluation of the
subsets containing j stages. At the start of the iteration, the subsetsin L that contain j-1 stages
will have been identified. Each of thegel” subsets will have a row vector corresponding to the
flow paths processed by any stage in this subset (See above). These row vectors will form the

matrix M. The number g1 subsets will be specified by ™. Then™ row vector of

M "t will be identified by[M ,-_1]” .In the algorithm, the stage subset corresponding to"thew
vector of M '™ will be identified bystage_subset[M j‘1]n. In general, for any sét R{ A} is the

row vector corresponding to the flow path subséi)P(

263



ALGORITHM: GENERATE L

Initialization: Adding the single stage subsetsto L
L=EMPTY SET
FORk=1TOK

INCLUDE{k} inL

ATTACH row vector R{k} to bottom of matrix M *
END k LOOP

Iteration: Generating the subsets with j stages that are in L, j=2,...,K
FORj=2TOK
FORKk=1TOK
FORN=1TO N'*
COMPARE(R{K},[M "] )
IF RETURN = TRUE
{newset={k} Of stage_subs@\‘/l J"1]n }
INCLUDE {newse}t in L

ATTACH row vector R{ newse} to bottom of matrix M *
END n LOOP
END k LOOP
END j LOOP

END
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