Periode : Semester Genap

: 2022 Tahun

Skema Penelitian : Hibah Internal

Tema RIP Penelitian : Kualitas Kesehatan, Penyakit Tropis, Gizi & Obat-Obatan

LAPORAN PENELITIAN

STUDI ANALISIS KUALITAS AIR MINUM TERHADAP HYGIENE SANITASI PADA DEPOT AIR MINUM ISI ULANG DI KELURAHAN GEBANG RAYA **TANGGERANG**

Oleh:

Ketua	: Veza Azteria,S.Si,M.Si	(1129108701)
Anggota	: 1. Ners Ernalinda Rosya S.Kep, M.Kep.	(1001098103)
	2. Ahmad Irfandi, SKM, MKM	(0322049201)
Mahasiswa	: 1. Fajri Okzan	(20190301216)
	2. Eka Febrianti	(20170301042)
	3. Chelsy Salsabila	(20190301179)
	4. Joko Santoso	(20190301286)
	5. M.Savvid Muflihun	(20180301180)

PROGRAM STUDI KESEHATAN MASYARKAT FAKULTAS ILMU-ILMU KESEHATAN UNIVERSITAS ESA UNGGUL

2022

Halaman Pengesahan Proposal/ Laporan Akhir Program Penelitian Universitas Esa Unggul

1. Judul Kegiatan Penelitian : Studi Analisis Kualitas Air Minum Terhadap Hygiene Sanitasi Pada Depot Air Minum Isi Ulang Di Kelurahan Gebang Raya Tanggerang

: 1129108701

: 081366192620

: 2 orang

: 5 orang

: Lektor 200 (III/C)

: Veza Azteria, S.Si, M.Si

: Kesehatan Lingkungan

: Juni – Desember 2022

: veza.azteria@esaunggul.ac.id

: Ilmu Kesehatan/ Kesehatan Masyarakat

2. Nama mitra sasaran

3. Ketua tim

a. Nama

b. NIDN

c. Jabatan Fungsional

d. Fakultas/Prodi

e. Bidang keahlian

f. Telepon g. Email

4. Jumlah Anggota Dosen

5. Jumlah Anggota Mahasisa

6. Lokasi kegiatan mitra

Alamat

Kabupaten/Kota

Propinsi

7. Periode/ waktu kegiatan

8. Luaran yang dihasilkan

9. Usulan/ Realisasi Anggaran

a. Dana Internal UEU

b. Sumber dana lain

Jakarta, 24 Mei 2022

: Jurnal Nasional/Internasional Terakreditasi

Pengusul,

Ketua Tim Pelaksana

Menyetujui,

Dekan Fakultas Ilmu-ilmu Kesehatan

Universitas Esa Unggul

(Prof.Dr. Aprilita Rina Yanti Eff, M. Biomed., Apt) (Veza Azteria, S.Si, M.Si) NIDN/K: 1129108701 NIDN/K: 215020572

> Menyetujui, Ketua LPPM Universitas Esa Unggul

a Unggu Yuchwa Mulyani, S.Gz., M.Sc)

NIK: 209100388

IDENTITAS DAN URAIAN UMUM

Judul Penelitian : Studi Kualitas Air Minum pada Depot Air Minum Isi Ulang Di

Kelurahan Gebang Raya Tanggerang

1. Tim Peneliti

No	Nama	Jabatan	Bidang	Instansi	Alokasi waktu
			Keahlian	Asal	(Jam/minggu)
1	Veza	Ketua	Kesehatan	Esa unggul	10 (jam/minggu)
	Azteria,S.Si,M.Si		Lingkungan		
2	Ners	Anggota	Keperawataan	Esa Unggul	8 (jam/minggu)
	ERNALINDA				
	ROSYA S.Kep,				
	M.Kep, SKM,			,	
	MKM				
3	Ahmad Irfandi,	Anggota	Kesehatan	E <mark>sa</mark> Unggul	8 (Jam/Minggu
	SKM, MKM		Lingkungan		

2. Objek Penelitian : Air Minum Isi Ulang

3. Masa pelaksanaan

Mulai : Juni 2022

Berakhir tahun : Desember 2022

4. Usulan biaya

Tahun ke-1 : 10.150.000

5. Lokasi Penelitian : Depot Air Minum Gebang Raya Tanggerang

6. Instansi yang terlibat : Balitbang

7. Temuan yang ditargetkan : Pengelolaan Lingkungan

8. Kontribusi mendasar pada suatu bidang ilmu : Ilmu Kesehatan Lingkungan

9. Jurnal ilmiah yang menjadi sasaran : Jurnal Nasional Terakreditasi

10. Rencana luaran berupa jasa, metode, model, sistem, produk/barang, paten, atau luaran lainnya yang ditargetkan :

a. Publikasi Ilmiah Jurnal Internasional, tahun ke-1 Target : belum/tidak ada

Universitas Esa Unggul Univ3ersitas

- b. Publikasi Ilmiah Jurnal Nasional Terakreditasi, tahun ke-1 Target: belum/tidak ada
- c. Publikasi Ilmiah Jurnal Nasional Tidak Terakreditasi, tahun ke-1 Target: belum/tidak ada
- d. Pemakalah dalam pertemuan ilmiah Nasional, tahun ke-1 Target: belum/tidak ada
- e. Pemakalah dalam pertemuan ilmiah Internasional, tahun ke-1 Target: belum/tidak ada
- f. Keynote Speaker dalam pertemuan ilmiah Internasional, tahun ke-1 Target: belum/tidak ada
- g. Keynote Speaker dalam pertemuan ilmiah Nasional, tahun ke-1 Target: belum/tidak ada
- h. Visiting Lecturer Internasional, tahun ke-1 Target: belum/tidak ada
- i. Paten, tahun ke-1 Target: belum/tidak ada
- j. Paten Sederhana, tahun ke-1 Target: belum/tidak ada
- k. Hak Cipta, tahun ke-1 Target: belum/tidak ada
- 1. Merk Dagang, tahun ke-1 Target: belum/tidak ada
- m. Rahasia Dagang, tahun ke-1 Target: belum/tidak ada
- n. Desain Produk Industri, tahun ke-1 Target: belum/tidak ada
- o. Indikasi Geografis, tahun ke-1 Target: belum/tidak ada
- p. Perlindungan Varietas Tanaman, tahun ke-1 Target: belum/tidak ada
- q. Perlindungan Topografi Sirkuit, tahun ke-1 Target: belum/tidak ada
- r. Teknologi Tepat Guna, tahun ke-1 Target: belum/tidak ada
- s. Model/Purwarupa/Desain/Karya Seni/Rekayasa Sosial, tahun ke-1 Target: belum/tidak ada
- t. Buku Ajar (ISBN), tahun ke-1 Target: belum/tidak ada
- u. Tingkat Kesiapan Teknologi (TKT), tahun ke-1 Target: -

Universitas Esa Unggul Univ4ersitas

DAFTAR ISI

IDENTITAS DAN URAIAN UMUM	3
DAFTAR TIM PELAKSANA PENELITIAN	
BAB I	
PENDAHULUAN	Universitas
Latar Belakang Permasalahan	11
2. Permasalahan	13
3. Tujuan Penelitian	14
4. Manfaat Penelitian	14
5. Hasil yang diharapkan	15
BAB II RENTRA DAN PETA JALAN PENELITIAN PERGURUAN TINGGI	17
2.1 Renstra Perguruan Tinggi	17
2.2 Peta Jalan Penelitian	
BAB III	19
TINJAUAN PUSTAKA	
3.1 Pengertian dan Komposisi	19
3.2 Sanitasi Depot Air Minum Isi Ulang	20
3.3 Syarat Air Minum	23
3.4 Parameter Kualitas Air Minum a. Paramater Mikrobiologi	
3.5 Hygiene Sanitasi Depot Air Minum Isi Ulang	26
Kerangka Konsep Penelitian	28
BAB IV	29
METODE PENELITIAN	29
Bahan dan Alat Penelitian	29
Waktu dan Tempat Penelitian	29
Pengumpulan data	29
Analisa Data	29
Pemeriksaan Mikrobiologi Bakteri Escherichia coli & coliform	30
Pemeriksaan pH	33
Pemeriksaan warna dalam sample air secara spektofotometri	

Pemeriksaan suhu dalam sample air dengan menggunakan thermometer	34
Tata cara penetapan suhu da <mark>lam s</mark> ampel air	35
Pemeriksaan Sanitasi Tempat Pengolahan Air Minum	35
Pemeriksaan Penjamah (Personal Hygiene)	36
Pemeriksaan Sanitasi Tempat	36
Jadwal Penelitian	
BAB V HASIL DAN PEMBAHASAN	38
4.1 HASIL	38
4.2 PEMBAHASAN	
Gambaran Parameter Mikrobiologi sebagai parameter yang langsung berhu dengan kesehatan	•
Gambaran Parameter Tambahan (pH, Suhu, Bau dan Warna) sebagai paramet	er yang tidak
langsung berhubungan dengan kesehatan	43
BAB VI KESIMPULAN DAN SARAN	
KESIMPULAN	44
SARAN	44
I AMDID AN	47

Esa Unggul

Universitas **Esa**

Universitas Esa Unagul Universitas EGA

DAFTAR GAMBAR

Gambar 1 Media Colilert-18	30
Gambar 2 Botol Steril	31
Gambar 3 Bio Safety	.i.31ers i tas
Gambar 4 Quanty Tray Shield	31
Gambar 5 Contoh Hasil Positif Escherichia coli	32
Gambar 6 Inkubator Thermo	32
Gambar 7 Depot dengan fasilitas yang kurang baik (1)	47
Gambar 8 Depot dengan fasilitas yang kurang baik (2)	47
Gambar 9 Depot dengan fasilitas yang kurang baik (3)	48
Gambar 10 Penjamah yang tidak memenuhi syarat (1)	48
Gambar 11 Penjamah yang tidak memenuhi syarat (2)	18

Esa Unggul

Universitas Esa U

Universitas Esa Unagul Universitas Esa U

DAFTAR TABEL

Table 1 Rencana Target Capaian <mark>Tahun</mark> an	15
Tabel 2 Parameter Persyaratan Air Minum	24
Table 3 Jadwal Penelitian Hingga Publikasi	37
Table 4 Hasil Uji Laboratorium Pemeriksaan Air Minum	38
Table 5 Persentase Gambaran Hasil Pemeriksaan Uji Kualitas Air Minum dan Hygiene	
Sanitasi Depot Air Minum	39

DAFTAR TIM PELAKSANA PENELITIAN UNIVERSITAS ESA UNGGUL

1. Ketua Pelaksana

Nama

: Veza Azteria, S. Si, M. SI

NIDN

: 1129108701

Jabatan Fungsional

: Lektor/Kesehatan Masyarakat

Fakultas/ Prodi

: Ilmu Kesehatan

Tugas

Membuat Proposal : 1.

2. Menyebarkan kuisioner penelitian

Wawancara penelitian

Analisa Data 4.

5. Publikasi ilmiah

6. Laporan akhir

7. Anggota 1

Nama

: Ners ERNALINDA ROSYA S.Kep, M.Kep

NIDN

: 1001098103 : Lektor

Jabatan Fungsional Fakultas/ Prodi

: Ilmu Kesehatan /Keperawatan

Tugas

: 1.Menyebarkan kuisioner penelitian

2. Wawancara Penelitian

3. Analisa Data

4. Laporan Akhir

Anggota 2

Nama

: Ahmad Irfandi, SKM, MKM

NIDN

: 0322049201

Jabatan Fungsional

: Asisten ahli

Fakultas/ Prodi

: Ilmu Kesehatan/Kesehatan Masyarakat

: 1. Menyebarkan kuisioner penelitian

Tugas

2. Wawancara Penelitian

3. Analisa Data

4. Laporan Akhir

9. Mahasiswa 1

: Fauzan Supangkat

Nama NIM

: 20190301216

Fakultas/ Prodi

: Ilmu Kesehatan/Kesehatan Masyarakat

Tugas

: 1. Menyebarkan kuisioner

2. Wawancara penelitian

10. Mahasiswa 2

: Eka Febrianti

Nama NIM

Fakultas/ Prodi

: 20170301042

: Ilmu Kesehatan/Kesehatan Masyarakat

Tugas : 1. Menyebarkan kuisioner 2. Wawancara penelitian 11. Mahasiswa 3 Nama : Chelsy Salsabila : 20190301179 NIM Fakultas/ Prodi Tugas

: Ilmu Kesehatan/Kesehatan Masyarakat

: 1. Menyebarkan kuisioner 2. Wawancara penelitian

12. Mahasiswa 4

Nama : Joko Santoso : 20190301286 NIM

Fakultas/ Prodi : Ilmu Kesehatan/Kesehatan Masyarakat

: 1. Menyebarkan kuisioner Tugas

2. Wawancara penelitian

13. Mahasiswa 5

Nama : M.Sayyid Muflihun NIM : 20180301180

Fakultas/ Prodi : Ilmu Kesehatan/Kesehatan Masyarakat

: 1. Menyebarkan kuisioner Tugas 2. Wawancara penelitian

Uni10ersitas

BABI

PENDAHULUAN

1. Latar Belakang

Air minum merupakan salah satu kebutuhan primer bagi semua makhluk hidup, salah satu tujuannya adalah untuk memenuhi cairan tubuh. Berdasarkan SDGs (*Sustainable Development Goals*) pada sector lingkungan hidup yaitu untuk memastikan masyarakat agar dapat mencapai akses universal air bersih dan sanitasi yag baik. Air bersih merupakan salah satu sumber daya yang bermutu baik dan dimanfaatkan untuk konsumsi dalam aktivitas kegiatan sehari hari. Salah satu tujuan dari SDGs adalah pada tahun 2030 seluruh masyarakat dapat mengakses air minum yang layak, berada dihalaman rumah, dapat diakses pada saat dibutuhkan, dan kualitas air minum sudah memnuhi standar Kesehatan yang ditetapkan oleh pemerintah.

Berdasarkan data BPS produksi air bersih yaitu 5.262,1 Juta/m³ dengan rincian kebutuhan social 97,9 Juta/m³, kebutuhan khusus 163,6 Juta/m³, kebutuhan niaga dan industry 456,3 Juta/m³, kebutuhan non niaga 2.917,7 Juta/m³ dan kebutuhan lainnya 715,2 juta/m³ (BPS, 2020). Pemenuhan kebutuhan air minum masyarakat saat ini sangat bervariasi. Di kota besar, dalam hal pemenuhan kebutuhan air minum masyarakat juga mengkonsumsi Air Minum Dalam Kemasan (AMDK), karena praktis dan dianggap lebih higienis. Akan tetapi kelamaan masyarakat merasa bahwa AMDK semakin mahal, sehingga muncul alternatif lain yaitu air minum yang diproduksi oleh Depot Air Minum (Kemenkes, 2017).

Air minum merupakan air yang mengalami pengolahan khusus yang melalui tahap chlorinasi, aerasi, filtrasi dan melalui penyinaran ultraviolet. Air minum isi ulang, jika semakin lama disimpan maka memungkinkan adanya pertumbuhan organisme yang kemudian akan berkembang menjadi bakhteri pathogen (Hidayanti, 2010). Masalah utama yang sering ditemui pada depot air minum isi ulang adalah tingginya tingkat pencemaran air, baik pencemaran yang berasal dari limbah rumah tangga maupun dari limbah industry. Berbabagai upaya yang telah dilakukan untuk pemenuhan untuk mendapatkan kualias air minum yang baik telah dilakukan dengan dilakukan berbagai macam metoda.

Depot air minum isi ulang (DAMIU) merupakan salah satu usaha industry yang melakukan proses pengolahan air baku menjadi air minum dengan langsung menjual langsung kepada konsumen. Meningkatnya kebutuhan konsumen mengakibatkan DAMIU

(Depot Air Minum Isi Ulang) tidak terjamin kualitas dan keamanannya. Pengawasan yang kurang terhadap DAMIU (Depot Air Minum Isi Ulang) memungkinkan mutu air minum yang dihasilkan tidak memenuhi standar yang telah ditetapkan PERMENKES 492 tahun 2010 tentang persyaratan kualitas air minum. Meningkatnya kebutuhan konsumsi masyarakat terhadap air minum isi ulang mengakibatkan tidak terjaminnya keamanan produknya, hal ini terjadi karena lemahnya pengawasan dari dinas terkait. Pengawasan yang kurang terhadap DAMIU memungkinkan menyebabkan kualitas air minum yang dihasilan fisik, kimia dan biologi tidak memenuhi standar yang telah ditetapkan. Air minum isi ulang cenderung lebih murah dibandingkan dengan air minum dalam kemasan, bahkan harganya hingga seperempat dari hara air minum kemasan. Sehingga pada umumnya masyarakat memilih air minum isi ulang sebagai salah satu pemenuhan kebutuhan air yang murah dan praktis.

Standar air minum yang beredar di Indonesia mengikuti standard air WHO (*World Health Organization*) yang dalam beberapa hal telah disesuaikan dengan kondisi air minum di Indonesia. Berdasarkan aturan pemerintah yang ditetapkan di PERMENKES 492 tahun 2010 mengenai syarat kualitas air minum dijelaskan bahwa air minum tidak diperbolehkan mengandung bakhteri *coliform* dan *Echerichia coli, pH* standar 6.5-8.5, tidak berbau, tidak berasa, kandungan nitrit 3mg/l, kandungan nitrat 50 mg/l. Berdasarkan Standar Nasional Indonesia (SNI) No. 01-3553 (2006), air dalam kemasan tidak boleh mengandung cemran mikroba lbih besar dari 100 koloni/mL bakhteri dan tidak boleh mengandung bakhteri pathogen diantaranya *Salmonella* dan *Pseudomonas aeruginosa*.

Berdasarkan aturan yang telah ditetapkan oleh Menteri Kesehatan terhadap standar fisika, kimia dan biologi standar kualitas air minum, ada beberapa variable kimia dan mikrobiologi berpengaruh langsung terhadap kesehatan. Sehingga jika salah satu kadar zat kimia tertentu tidak memenuhi syarat, maka air tersebut tidak layak diminum (Adelina R, 2012). Usaha air minum isi ulang pada umumnya masih pada skala yang kecil, dari segi sarana prasarana, pengetahuan pemilik depot masih belum cukup. Sehingga kualitas air yang dihasilka dapat mempengaruhi kesehatan yang telah ditetapkan oleh pemerintah (Marsono, 2013).

Pemilihan lokasi dilakukan di Kelurahan Gebang Raya tanggerang dikarenakan pada lokasi ini menurut data BPS (2020) Proporsi kasus diare di kota Tangerang tahun 2020 menunjukan angka tertinggi di kelompok umur >20 tahun dengan jumlah 12,000 penduduk yang terpapar diare yang disebabkan melalui penularan vekal oral dari sarana penyediaan air bersih dan air minum, cara penyajian makanan dan minuman serta PHBS (perilaku

Universitas Esa Undaul

Uni12ersitas

hidup bersih dan sehat). Dari data hasil inspeksi kesehatan lingkungan di Kota Tangerang selama tahun 2020 adalah sebanyak 27.812 sarana yang di inspeksi dari total 437.979 sarana (6,35%), dari hasil inpeksi didapat kan 26.669 sarana yang memiliki resiko rendah dan sedang dengan presentase 95,89%. Dari 199 sampel yang diperiksa di Laboratorium, terdapat 125 sampel yang memenuhi syarat kesehatan (62,81%). Data tempat pengelolaan makanan (TPM) tahun 2020 di wilayah kerja puskesmas kelurahan gebang raya didapatkan ada 16 sarana depot air minum (DAM) dari 16 sarana hanya terdapat 6 sarana depot air minum yang memenuhi syarat dengan presentase 37,50% (Dinas Kesehatan Kota Tangerang, 2020).

Penelitian yang dilakukan oleh Hikmah (2020) mengenai uji kualitas air minum dengan syarat kualitas mikrobiologi yaitu adanya hubungan yang ditunjukkan antara kualitas mikrobilogi sengan sanitasi depot air minum, hygene perseorangan, metode pengolahan air minum. Data pemeriksaan air minum terakhir tahun 2021 dikelurahan gebang raya didapatkan total 17 depot air minum isi ulang yang beroperasi aktif di kelurahan gebang raya dan dari hasil pemeriksaan didapatkan hasil air minum yang tidak memenuhi syarat sebanyak 6 depot, 4 depot memenuhi syarat, dan 7 depot belum dilakukan pemeriksaan mikrobiologis air minum. Berdasarkan studi pendahuluan awal, telah dilakukan observasi pada 4 DAMIU di wilayah Kelurahan Gebang Raya dengan acuan standar PERMENKES 429 tahun 2010. Terdapat 1 DAMIU yang terkontaminasi dengan Escheria coli, sedangkan 3 DAMIU lainnya belum terbebas dari vector kecoa dan tikus. Sedangkan hygiene sanitasi 4 operator DAMIU pada saat observasi ditemukan tidak mencuci tangan sebelum melayani konsumen, belum ada sertifikat hygiene sanitasi, belum ada alat UV sterilisasi dan desinfeksi. Berdasarkan hasil studi pendahuluan dan observasi yang telah dilakukan, maka peneliti tertarik untuk melakukan penelitian mengenai studi kualitas air minum di depot air minum isi ulang Kelurahan Gebang Raya, Kecamatan Periuk Tanggerang.

2. Permasalahan

Wilayah Kelurahan Gebang Raya Tanggerang merupakan salah satu wilayah yang padat penduduk. Tahun 2021 tercatat ada 17 sarana depot air minum isi ulang yang berdasarkan hasil dari studi pendahuluan terdapat 10 depot (62,5%) yang belum melakukan uji pemeriksanan mikrobiologis air minum atau pemeriksanan sanitasi air minum.

Esa Unggul

Uni 13 er sitas

Air minum merupakan komponen utama dalam tubuh sehingga kebutuhan air merupakan hal yang sangat penting dalam kehidupan. Sebagai penyedia air minum, depot air minum isi ulang harus memenuhi standar sanitasi hygiene dan kualitas air salah satunya adalah kualitas air secara mikrobiologis sebagai parameter yang berhubungan langsung dengan kesehatan dan parameter tambahan yang tidak berhubungan langsung dengan kesehatan seperti pH, suhu, warna dan bau yang sesuai dengan standar PERMENEKES 429 tahun 2010. Berdasarkan permasalahan yang diuraikan pada latar belakang penyelenggaraan depot air minum di kelurahan gebang raya belum sepenuhnya baik, sedangkan pertumbuhan penduduk diwilayah tersebut meningkat serta konsumsi air minum isi ulang meningkat. Berdasarkan permasalah tersebut maka peneliti menganggap perlu untuk dilakukan penelitian mengenai studi analisis kualitas air minun terhadap hygiene sanitasi depot air minum isi ulang di Kelurahan Gebang Raya Tanggerang Tahun 2022

3. Tujuan Penelitian

a. Tujuan Umum

Penelitian ini dilakukan dengan tujuan untuk melakukan analisis kualitas air minum terhadap hygiene sanitasi pada depot air minum isi ulang di Kelurahan Gebang Raya Tanggerang

b. Tujuan Khusus

- Mengetahui uji kualitas parameter fisika air minum yaitu suhu, pH, bau dan warna
- 2. Mengetahui uji kualitas parameter mikrobiologi air minum yaitu *E- Coli* dan *Coliform*
- Mengetahui kondisi hygiene sanitasi DAMIU diantaranya tempat, peralatan, penjamah dan air baku pda DAMIU di wilayah kerja Puskesmas Kelurahan Gebang Raya Kota Tanggerang

4. Manfaat Penelitian

a. Bagi Masyarakat

Mengetahui informasi mengenai kualitas air minum dan kondisi hygiene sanitasi pada Depot Air Minum Isi Ulang

b. Bagi Instansi terkait

- i. Penelitian ini diharapkan dapat digunakan untuk melakukan pengawasan dan pembinaan terhadap uji kualitas air air minun pada depot air minum isi ulang dikawasan tersebut
- ii. Penelitian ini dapat digunakan sebagai referensi tambahan untuk penelitian lanjutan
- iii. Dapat dijadikan refenresi dalam merumuskan kebijakan terkait izin pendirian depot air minum isi ulang bagi masyarakat Kelurahan Gebang Raya Kota Tanggerang
- iv. Dapat menjadi bahan evaluasi bagi instansi terkait dalam menerapkan masyarakat hidup bersih dan sehat

5. Hasil yang diharapkan

Table 1 Rencana Target Capaian Tahunan

Me rek		Indikator Capaian			
	Kategori	V Sub Kategori	Wajib	Tambahan	TS
1	Artikel ilmiah dimuat di jurnal	Internasional bereputasi	ggu	-	tidak ada
		Nasional terakreditasi	-	-	ada
		Nasional tidak terakreditasi	-	-	tidak ada
2	Artikel ilmiah	Internasional terindeks	-	-	tidak ada
	dimuat di prosiding	Nasional	-	-	ada
3	Invited speaker	Internasional	-	-	tidak ada
	dalam temu ilmiah	Nasional	-	-	tidak ada
4	Visiting Lecturer	Internasional	-7/	-	tidak ada
5	Hak Kekayaan	paten	<u> </u>	-	tidak ada
	Intelektual (HKI)	Paten sederhana		-	tidak a <mark>da</mark>

		Hak Cipta	-	-	ada
		Merek Dagang	-/	-	tidak a <mark>da</mark>
		Rah <mark>asia d</mark> agang	-	-	tidak ada
		Desain produk Industri	-	-	tidak ada
Indikasi Geografis		Indikasi Geografis	-	-	tidak ada
		Perlindungan Varietas	0 (0 ()	-	tidak ada
		Tanaman			
		Perlindungan Topografi	-	-	tidak ada
		Sirkuit Terpadu			
6	Teknologi Tepat Gun	a	-	-	tidak ada
7	Model/Purwarupa/Desain/Karya seni/ Rekayasa		-	-	tidak ada
	Sosial8)				
8	Buku Ajar (ISBN)		-	-	tidak ada
9	Tingkat Kesiapan Teknologi (TKT)				1

Iniversitas Esa Unggul Universitas **Esa**

Universitas Esa Unggul Unil6ersitas

BABII

RENTRA DAN PETA JALAN PENELITIAN PERGURUAN TINGGI

2.1 Renstra Perguruan Tinggi

Payung Penelitian Unggulan Universitas Esa Unggul sampai dengan tahun 2021 adalah Mewujudkan Hasil Penelitian Berkualitas dan Sustainable. Untuk mewujudkan payung penelitian tersebut, seluruh program-program penelitian diarahkan dalam mengatasi Tujuh Tema Sentral yang menjadi unggulan Universitas Esa Unggul. RIP merupakan dasar yang dapat memadukan seluruh sumberdaya agar penyelesaian masalah menjadi lebih fokus dan lebih komprehensif sehingga mampu mengarahkan kebijakan, perencanaan penelitian dan pengambilan keputusan dalam pengelolaan penelitian institusi secara berkesinambungan selama kurun waktu 5 tahun ke depan (2017–2021) dengan memperhatikan Skema 7 bidang unggulan penelitian di Universitas Esa Unggul, yaitu:

- 1) Pengentasan Kemiskinan (*Poverty Alleviation*) dan Ketahanan & Keamanan Pangan (*Food Safety & Security*)
- 2) Pemanfaatan Energi Baru dan Terbarukan (New And Renewable Energy)
- 3) Kualitas Kesehatan, Penyakit Tropis, Gizi & Obat-Obatan (Health, Tropical Diseases, Nutrition & Medicine)
- 4) Penerapan Pengelolaan Bencana (*Disaster Management*) dan Integrasi Nasional &
- 5) Harmoni Sosial (*Nation Integration & Social Harmony*)
- 6) Implementasi Otonomi Daerah & Desentralisasi (Regional Autonomy & Decentralization)
- 7) Pengembangan Seni & Budaya/Industri Kreatif (*Arts & Culture/ Creative Industry*) dan Teknologi Informasi & Komunikasi (*Information & Communication Technology*)
- 8) Pembangunan Manusia & Daya Saing Bangsa (*Human Development & Competitiveness*)

Sedangkan tema penelitian di fakultas ilmu-ilmu kesehatan adalah :

- 1. Penyakit tropis dan sindrom metabolic
- 2. Pengembangan obat bahan alam
- 3. Gizi dan Promosi Kesehatan
- 4. Kebijakan Kesehatan dan Peningkatan Kualitas Hidup

Universitas Esa Unggul Uni 17ersitas

5. Sistem Informasi dan tekhnologi informasi Kesehatan Rencana induk penelitian program studi kesehatan masyarakat, Universitas Esa

Unggul mengacu pada payung penelitian Unggulan Universitas Esa Unggul, berdasarkan rumpun ilmu kesehatan masyarakat dengan pembagian sebagai berikut:

- 1. Manajemen bencana
- 2. Penerapan budaya K3
- 3. Peningkatan kualitas kesehatan lingkungan
- 4. Teknologi tepat guna dibidang kesehatan
- 5. Pencegahan dan pengendalian Penyakit Tidak Menular dan Penyakit Menular
- 6. Perumusan kebijakan kesehatan untuk peningkatan kualitas hidup

2.2 Peta Jalan Penelitian

Penelitian ini dimulai dengan penyusunan proposal yang merangkum variable dan metode penelitian untuk diajukan etik kepada lembaga yang berwenang. Selanjutnya persiapan penelitia dikakuan dengan persiapan penelitian, perizinan terhadap isntansi terkait, survei dan observasi untuk studi pendahuluan. Tujuannya adalah untuk menentukan sampel dan responden yang akan dipilih untuk dilakukan uji laboratorium dan observasi.

Pelaksanaan penelitian dilakukan dengan melalkukan pengambilan sampel air minum dari setiap depot kemudian dilakukan uji laboratorium diantaranya adalah uji parameter mikrobiologi sebagai parameter wajib yaitu *Eschericia Coli* dan *Coliform*, dan parameter tambahan yaitu bau, warna, pH dan suhu yang terdapat dalam kandungan air minum tersebut. Setelah itu, dilakukan observasi terhadap hygiene sanitasi dapot berdasarkan pada tempat, peralatan, penjamah dan air baku pada masing masing depot air minum isi ulang di wilayah kerja Puskesmas Gebang Raya Kota Tanggerang.

Sebelum melakukan penelitian, peneliti membuat lembar observasi dan mengambil sample disetiap depot air minum isi ulang untuk kemudian dialkukan uji laboratorium dan observasi hygiene sanitasi berdasarkan PERMENKES no 43 Tahun 2014 tentang hygiene sanitasi depot air minum. Berdasarkan aturan pemerintah tersebut variable yang di obserbasi apakah depot air minum tersebut memiliki sertifikat laik hygiene, telah memenuhi standar baku mutu atau persyaratan kualitas air minum dan persyaratan sanitasi.

Hasil penelitian akan dipublikasikan dalam jurnal nasional/internasional akreditasi dan akan di presentasikan atau di desiminasikan dalam seminar nasional atau internasional.

Diharapkan dapat memberikan rekomendasi kepada instansi terkait dalam merumuskan kebijakan pendirian depot air minum isi ulang yang layak dan dapat dikonsumsi dengan baik.

TINJAUAN PUSTAKA

3.1 Pengertian dan Komposisi

Air merupakan substansi penting dalam kehidupan, terutama kehidupan manusia. Kehidupan pertama di Bumi bermula dari wilayah perairan yang terbentuk sekitar 3,4 - 4,4 juta tahun yang lalu (Alberts, B., et al, 2015). Air bersih keberadaannya sangat berhubungan dengan berbagai masalah pembangunan manusia terutama pada bidang kesehatan, tersedianya sanitasi dan air bersih yang layak berperan besar penanggulangan masalah kesehatan (Kementerian Koordinator Pembangunan Manusia dan Kebudayaan RI, 2021).

Komposisi air dalam tubuh manusia sekitar 60% (40-80%) dan setiap proses metabolisme tubuh sangat bergantung pada komponen air. Oleh karena itu, penting untuk menjaga kadar air tubuh untuk mencegah dehidrasi dan gangguan elektrolit. Selain itu, air juga sangat dibutuhkan dalam kegiatan sehari-hari seperti mencuci, mandi, olah raga, mengolah makanan, dan lain-lain. Perlu diketahui bahwa tidak semua air dapat digunakan oleh manusia untuk dikonsumsi ataupun digunakan dalam kegiatan sehari-hari. Banyak hal yang perlu diperhatikan misalnya seperti pH, temperatur, kandungan mineral, dan mikroorganisme kontaminan yang ada dalam air tersebut. dan setiap proses metabolisme tubuh sangat bergantung pada komponen air. Oleh karena itu, penting untuk menjaga kadar air tubuh untuk mencegah dehidrasi dan gangguan elektrolit. Selain itu, air juga sangat dibutuhkan dalam kegiatan sehari-hari seperti mencuci, mandi, olah raga, mengolah makanan (Sherwood, L 2016).

Upaya kesehatan lingkungan untuk media Air untuk Keperluan Higiene Sanitasi meliputi parameter fisik, biologi, dan kimia yang dapat berupa parameter wajib dan parameter tambahan. Parameter wajib merupakan parameter yang harus diperiksa secara berkala sesuai dengan ketentuan peraturan perundang-undangan. Air untuk Keperluan Higiene Sanitasi tersebut digunakan untuk pemeliharaan kebersihan perorangan seperti mandi dan sikat gigi, serta untuk keperluan cuci bahan pangan, peralatan makan, dan pakaian. Selain itu Air untuk Keperluan Higiene Sanitasi dapat digunakan sebagai air baku air minum (Kemenkes, RI

Universitas Esa Unggul Uni 19ersitas

2017). Air minum yang memenuhi syarat kesehatan berarti air minum tersebut aman (layak) bagi kesehatan, yaitu aman secara fisik, kimia, mikrobiologis dan radioaktif. Secara fisik, air minum yang sehat adalah tidak berbau, tidak berasa, tidak berwarna serta memiliki total zat padat terlarut, kekeruhan, dan suhu sesuai ambang batas yang ditetapkan. Secara mikrobiologis, air minum yang sehat harus bebas dari bakteri Escherichia coli dan total bakteri koliform. Secara kimiawi, zat kimia yang terkandung dalam air minum seperti besi, aluminium, klor, arsen, dan lainnya harus di bawah ambang batas yang ditentukan. Secara radioaktif, kadar gross alpha activity tidak boleh melebihi 0,1 becquerel per liter (Bq/l) dan kadar gross beta activity tidak boleh melebihi 1 Bq/l (Kemenkes, RI 2017).

3.2 Sanitasi Depot Air Minum Isi Ulang

Secara umum sebagian kebutuhan air minum masyarakat dapat bersumber dari air sumur dan air ledeng yang sudah diolah oleh perusahaan daerah air minum (PDAM). Namun demikian peningkatan kebutuhan air minum kadang tidak dapat terpenuhi oleh sumber air sumur maupun sumber air minum PDAM. Pola hidup yang serba instan dan kebutuhan air minum yang semakin menigkat diperkotaan, sehingga konsumen mencari alternatif baru yang murah yaitu air minum isi ulang dalam memenuhi kebutuhan air minum. Saat ini masyarakat jarang memasak air untuk diminum dan dalam memenuhi kebutuhan air minumnya dan lebih cenderung memilih air minum air siap saji. Hal ini juga dipengaruhi akibat banyaknya usaha usaha yang bergerak di bidang penyediaan air mineral, salah satunya depot air minum isi ulang yang memungkinkan masyarakat dapat dengan mudah untuk membeli dan mengkonsumsinya.

Depot air minum isi ulang merupakan salah satu kegiatan usaha yang mengarah kepada air bersih untuk memenuhi air masyarakat dan memenuhi gaya hidup masyarakat sekarang yang mengutamakan kepraktisan dan kemudahan dalam memenuhi kebutuhan hidup (Herniwati, 2020). Dalam hal pengadaan sumber air usaha depot air minum isi ulang, air yang akan digunakan haruslah sesuai dengan syarat kualitas air minum yang baik. Air yang di peruntukkan bagi konsumsi manusia harus berasal dari sumber yang bersih dan aman. Batasan-batasan sumber air yang bersih dan aman antara lain:

- 1. Bebas dari kontaminasi kuman, bakteri, dan bibit penyakit
- 2. Bebas dari subtansi kimia yang berbahaya dan beracun
- 3. Tidak berasa dan tidak berbau

Universitas Esa Unggul

Uni20ersitas

- 4. Dapat dipergunakan untuk mencukupi kebutuhan domestik rumah tangga
- 5. Memenuhi st<mark>andar</mark> minimal yang ditentukan WHO dan Departemen Kesehatan RI (Herniwati, 2020).

Meningkatnya kebutuhan konsumen mengakibatkan DAMIU tidak terjamin keamanan produknya, hal ini terjadi karena lemahnya pengawasan dari dinas terkait. Pengawasan yang kurang terhadap DAMIU memungkinkan minum yang dihasilkan tidak memenuhi standar yang telah ditetapkan. Beberapa bahan pencemar atau polutan seperti bahan mikrobiologi (bakteri, virus parasit), bahan organik dan beberapa bahan kimia lainnya sudah banyak ditemukan dalam air yang digunakan, sehingga sering ditemukan perbedaan atau penyimpangan produk dari setiap depot air minum(Narsi Wahyuni et al, 2017). Masalah utama yang sering dihadapi dalam pengolahan air adalah semakin tingginya tingkat pencemaran air, baik pencemaran yang berasal dari limbah rumah tangga maupun limbah industry, sehingga upaya upaya bar uterus dilakukan untuk mendapatkan sumber air, khususnya untuk pemenuhan kebutuhan akan air minum yang mmenuhi persyaratan yang telah ditetapkan. Hal ini juga dika<mark>r</mark>enakan dalam pengelolaa<mark>n</mark>ya air minum isi ulang rentan terhadap kontaminasi dari berbagai mikroorganisme terutama bakteri coliform (Sunarti. R.N, 2016).

Salah satu masalah pencemaran air minum isi ulang yakni kontaminasi dari higiene sanitasi perorangan berasal dari seberapa sering penjamah melakukan cuci tangan dan menjaga kebersihan peronal, karena berasal dari batuk dan bersin menjadi sarana penyebaran bakteri Staphylococcus ke bahan pangan air minum, luka yang terbuka dipermukaan kulit juga dapat menyebarkan bakteri pathogen, serta kuku yang Panjang dan kotor bisa jadi penyebaran mikroorganisme pathogen seperti bakteri Escherichia coli yang bisa menyebabkan penyakit diare (Kusmiyati, 2021)

Syarat hygiene sanitasi sebuah Depot Air Minum Isi Ulang menurut PERMENKES no 43 Tahun 2014 diantaranya:

- 1. Persyaratan Higiene Sanitasi dalam pengelolaan Air Minum paling sedikit meliputi aspek yakni tempat, peralatan dan penjamah.
- 2. Aspek tempat sebagaimana dimaksud meliputi:
 - lokasi berada di daerah yang bebas dari pencemaran lingkungan dan penularan penyakit

- bangunan kuat, aman, mudah dibersihkan, dan mudah pemeliharaannya
- lantai kedap air, permukaan rata, halus, tidak licin, tidak retak, tidak menyerap debu, dan mudah dibersihkan, serta kemiringan cukup landai untuk memudahkan pembersihan dan tidak terjadi genangan air
- dinding kedap air, permukaan rata, halus, tidak licin, tidak retak, tidak menyerap debu, dan mudah dibersihkan, serta warna yang terang dan cerah
- memungkinkan adanya pertukaran udara yang cukup atau lebih tinggi dari ukuran tandon air
- memiliki pintu dari bahan yang kuat dan tahan lama, berwarna terang, mudah dibersihkan, dan berfungsi dengan baik
- pencahayaan cukup terang untuk bekerja, tidak menyilaukan dan tersebar secara merata
- ventilasi harus dapat memberikan ruang pertukaran/peredaran udara dengan baik
- kelembaban udara dapat mendukung kenyamanan dalam melakukan pekerjaan/aktivitas
- memiliki akses fasilitas sanitasi dasar, seperti jamban, saluran pembuangan air limbah yang alirannya lancar dan tertutup, tempat sampah yang tertutup serta tempat cuci tangan yang dilengkapi air mengalir dan sabun
- bebas dari vektor dan binatang pembawa penyakit seperti lalat, tikus dan kecoa.
- 3. Aspek peralatan sebagaimana dimaksud meliputi:
 - peralatan dan perlengkapan yang digunakan antara lain pipa pengisian air baku, tandon air baku, pompa penghisap dan penyedot, filter, mikrofilter, wadah/galon air baku atau Air Minum, kran pengisian Air Minum, kran pencucian/pembilasan wadah/galon, kran penghubung, dan peralatan desinfeksi harus terbuat dari bahan tara pangan (food grade) atau tidak menimbulkan racun, tidak

- menyerap bau dan rasa, tahan karat, tahan pencucian dan tahan disinfeksi ulang.
- mikrofilter dan desinfektor tidak kadaluarsa. tandon air baku harus tertutup dan terlindung
- wadah/galon untuk air baku atau Air Minum sebelum dilakukan pengisian harus dibersihkan dengan cara dibilas terlebih dahulu dengan air produksi paling sedikit selama 10 (sepuluh) detik dan setelah pengisian diberi tutup yang bersih
- wadah/galon yang telah diisi Air Minum harus langsung diberikan kepada konsumen dan tidak boleh disimpan pada DAM lebih dari 1x24 jam.

4. Aspek penjamah meliputi:

• sehat dan bebas dari penyakit menular serta tidak menjadi pembawa kuman patogen (*carrier*) dan berperilaku higienis dan saniter setiap melayani konsumen, antara lain selalu mencuci tangan dengan sabun dan air yang mengalir setiap melayani konsumen, menggunakan pakaian kerja yang bersih dan rapi, dan tidak merokok setiap melayani konsumen(Kemenkes RI, 2014).

3.3 Syarat Air Minum

Air minum adalah air yang melalui proses pengolahan atau tanpa proses pengolahan yang memenuhi syarat kesehatan dan dapat langsung diminum. Penyelenggara air minum adalah badan usaha milik negara/badan usaha milik daerah, koperasi, badan usaha swasta, usaha perorangan, kelompok masyarakat dan /atau individual yang melakukan penyelenggaraan penyediaan air minum. Air minum yang aman bagi kesehatan apabila memenuhi persyaratan fisika, mikrobiologis, kimiawi dan radioaktif yang dimuat dalam parameter wajib dan paramater tambahan. Parameter wajib sebagaimana dimaksud merupakan persyaratan kualitas air minum yang wajib diikuti dan ditaati oleh seluruh penyelenggara air minum.

Untuk menjaga kualitas air minum yang dikonsumsi masyarakat dilakukan pengawasan kualitas air minum secara eksternal dan secara internal. Pengawasannya melalui inspeksi sanitasi, pengambilan sampel air, pengujian kualitas air, analisis hasil pemeriksaan laboratorium rekomendasi dan tindak lanjut. Setiap penyelenggara air

minum wajib menjamin air minum yang diproduksinya aman dikonsumsi. Air minum aman bagi kesehatan apabila memenuhi persyaratan fisika, mikrobiologis, kimiawi dan radioaktif yang dimuat dalam parameter wajib parameter tambahan. Parameter wajin merupakan persyaratan wajib yang diikuti, pengawasan kualitas air minum meliputi 2 pengawasan yaitu pengawasan internal dan eksternal, persyaratan internal merupakan persyaratan yang dilakukan secara internal oleh pihak internal sedangkan persyaratan eksternal dilakukan oleh pihak dinas kesehatan kabupaten/kota dan KKP khusus wilayah kerja KKP

Adapun persyaratan kualitas air minum berdasarkan PERMENKES 429 tahun 2010 diantaranya :

Tabel 2 Parameter Persyaratan Air Minum				
No	Jenis Parameter	Satuan	Kadar Maksimum Yang Diperbolehkan	
1	1 parameter yang berhubungan langsung dengan kesehatan			
	a. parameter mikrobiologi			
	1. Escherichia coli	jumlah /100ml	0	
	2. Total Bakteri Coliform	jumlah /100ml	0	
	b. kimia an-organik			
	1. Arsen	mg/l	0,01	
	2. Flourida	mg/l	1,5	
	3. Total Kromium	mg/l	0,05	
	4. Kadmium	mg/l	0,003	
	5. Nitrat	mg/l	3	
	6. Nitrit	mg/l	50	
	7. Sianida	mg/l	0,07	
	8. Selenium	mg/l	0,01	
	c. parameter fisik			
	1. Bau		Tidak Berbau	
	2. Warna	TCU	15	
	3. TDS	mg/l	500	
	4. Kekeruhan	NTU	5	
	5. Rasa		Tidak Berasa	
	6. Suhu	oC	Suhu udara kurang lebih 3	

3.4 Parameter Kualitas Air Minum

a. Paramater Mikrobiologi

Bakteri Escheriachia coli adalah kelompok Coliform yang termasuk dalam *Enterobacteriaceae*. *Enterobacteriaceae* adalah bakteri usus atau bakteri yang mampu bertahan hidup di saluran pencernaan. Bakteri Escheriachia coli merupakan jenis bakteri berbentuk batang, gram negatif, bersifat anaerob fakultatif, dapat bertahan hidup dikondisi yang kurang nutrisi dan lingkungan yang ekstrim, tidak membentuk spora, dan merupakan flora alami di saluran usus mamalia. Bakteri Escheriachia coli dapat tumbuh dengan baik di air tawar, air laut, dan air tanah. Karakteristik biokimia yang dimiliki bakteri Escheriachia coli mampu menghasilkan indol, tidak efektif dalam memfermentasi sitrat, dan analisis urease bersifat negatif (Rahayu, et al, 2018).

Bakteri *Escheriachia coli* dapat bertahan hidup pada keasaman yang tinggi dalam tubuh manusia dan di luar tubuh manusia yang disebarkan melalui feses. Kedua habitat yang berlawanan, saluran pencernaan manusia sebagai habitat yang stabil, hangat, anaerobik, dan kaya nutrisi. Sedangkan habitat di luar tubuh, kondisi suhu yang lebih rendah, aerobik, dan nutrisi yang sedikit. Bakteri *Escheriachia coli* menjadi salah satu indikator kualitas air minum, karena kebaradaannya dalam air menunjukkan bahwa air tersebut terkontaminasi dengan mengandung mikroorganisme patogen lainnya. Bakteri *Escheriachia coli* dalam air ada yang bersifat non-patogen, tetapi kadang ditemukan strain patogen yang menghasilkan toksin shiga (enterhaemorrhagic), seperti penghasil enterotoksin dan *Escherichia coli*.

Escheriachia coli memiliki 3 jenis yang dikelompokkan berdasarkan interaksi dengan inang, yaitu non-patogen, patogen saluran pencernaan, dan patogen di luar saluran pencernaan. Ketiga jenis ini sering dikaitkan dengan patotipe tertentu. Terdapat 6 Escheriachia coli patogenik atau patotipe, yaitu enterotoksigenik E. coli (ETEC), enteropatogenik E.coli (EPEC), enterohemoragik E.coli (EHEC), enteroinvasif E. coli (EIEC), enteroagregatif E. coli (EAEC), dan difusif adheren E. coli (DAEC). Tipe ini dikelompokkan sebagai mekanisme patogenisitas yang menyebabkan gastrointestinal seperti penyakit diare(J Jang et al, 2017).

Bakteri Coliform merupakan bakteri dari famili *Enterobacteriaceae* yang termasuk ke dalam golongan bakteri aerobik, gram negatif, berbentuk batang, dapat memfermentasi laktosa yang menghasilkan asam dan gas pada suhu 35 C dalam 48 jam. Coliform berasal dari kotoran hewan dan manusia dan bakteri. Coliform digunakan sebagai indikator

kebersihan dalam pengolahan pangan. Terdapat jenis Coliform yang lebih tahan panas atau biasa disebut *thermotolerant Coliform* atau *fecal Coliform* (Coliform dari tinja Escherichia coli) dan *non-Fecal (Enterobacter. Klebsiella, dan Citrobacter). Fecal Coliform* memiliki karakteristik yang sama dengan *coliform* yang disebutkan di atas, perbedaanya dapat memfermentasi laktosa menghasilkan asam dan gas selama 48 jam pada suhu 45 derajat celcius (Inggrid, et al 2016). Bakteri *coliform* biasanya dijadikan sebagai indikator kualitas dalam hal sanitasi terhadap makanan dan minuman, yang dapat menandakan adanya mikroorganisme patogen yang sangat berbahaya bagi kesehatan. jumlah bakteri *coliform* yang diizinkan adalah 0/100 mL sampel(Kemenkes RI, 2010).

3.5 Hygiene Sanitasi Depot Air Minum Isi Ulang

Hygiene sanitasi depot air minum adalah upaya untuk mengendalikan faktor resiko terjadinya kontaminasi yang berasal dari tempat, peralatan dan penjamah terhadap air minum agar aman dikonsumsi. Hal-hal yang perlu diperhatikan dalam Depot Air Minum Isi Ulang, seperti:

1. Faktor Tempat Depot Air Minum

Bangunan/ gedung depot harus kuat/kokoh, agar tidak memungkinkannya sebagai tempat berkembangbiaknya vector dan binatang pengganggu, konstuksi lantai bersih dan tidak licin, bagian yang selalu kontak dengan air dibuat miring ke arah saluran pembungan air agar tidak membentuk genangan air, dinding bersih permukaan yang selalu berkontak dengan air harus. kedap air agar tidak menjadi lembab, dinding berwarna terang agar vector dan binatang pengganggu tidak bersarang karena vector dan binatang pengganggu lebih suka di tempat yang gelap dan lembab, pintu dapat dibuka dan ditutup dengan baik serta dapat mencegah masuknya binatang pengganggu,ventilasi dibuat dengan baik agar ada pertukaran udara yang baik dan tidak lembab.

2. Faktor Penjamah

Penjamah harus dengan keadaan sehat untuk menghindari kontak dengan sumber penyakit dan dapat mengakibatkan pencemaran terhadap air minum. Penjamah harus berperilaku higienis dan saniter setiap melayani konsumen yaitu seperti mencuci tangan dengan sabun dan air yang mengalir setiap melayani konsumen karena meskipun tampaknya ringan dan sering disepelekan namun terbukti cukup efektif dalam upaya mencegah kontaminasi pada makanan dan minuman, pencucian tangan

dengan sabun dan diikuti dengan pembilasan akan menghilangan banyak mikroba yang terdapat pada tangan, menggunakan pakaian kerja yang bersih dan tidak merokok pada saat melayani konsumen karena dapat menyebabkan pencemaran terhadap air minum. Penjamah harus melakukan pelatihan agar memahami hal-hal yang jika terjadi kontaminasi dapat memindahkan bakteri dan virus pathogen dari tubuh, atau sumber lain ke makanan/minuman.

3. Faktor Peralatan Depot Air Minum

Peralatan dan perlengkapan yang digunakan antara lain pipa pengisian air baku, tandon air baku, pompa penghisap dan penyedot, filter, mikro filter, wadah/galon air baku atau air minum, kran pengisian air minum, kran pencucian/pembilasan wadah/galon, kran penghubung, dan peralatan desinfeksi harus terbuat dari bahan tara pangan atau tidak menimbulkan racun yang dapat merubah kualitas air minum isi ulang. Peralatan depot air minum isi ulang harus di sterilisasi terlebih dahulu dulu dengan menggunakan ultraviolet untuk mematikan bakteri yang menempel pada peralatan yang digunakan di depot air minum isi ulang. Ultraviolet yang tidak sesuai antara kapasitas dan kecepatan air yang melewati penyinaran ultraviolet, sehingga air terlalu cepat, maka bakt<mark>eri</mark>nya tidak mati. Idealn<mark>ya</mark> untuk air minum kapasitas ultraviolet minimal adalah tipe 8 GPM 9 galon permenit) berarti kran pengisian depot digunakan untuk mengisi maksimal 1,5 botol per menit. Keberadaan izin atau rekomendasi filter dan mikrofilter termasuk didalamnya pencantuman masa kerja filter dan mikrofilter turut berpengaruh bagi cemaran mikroba pada air minum isi ulang. Masa pakai dari mikro filter sudah di tentukan oleh produsen (pabrik yang membuat) mikro filter. Semakin lengkap ukuran filter yang digunakan (10-0,1 mikron) maka filter tersebut dapat menyaring bakteri ataupun partikel-partikel halus lain yang ada di dalam air. Jika tidak berfungsi pada filtrasi ini maka bakteri tidak mati pada saat pengolahan air baku menjadi air minum (Aditya Suhendra, 2013).

> Universitas Esa Undqui

Uni27ersitas

Kerangka Konsep Penelitian Berdasarkan kerangka konsep yang telah dijelaskan, maka adapun variable yang akan diteliti adalah

(Tempat, kelengkapan fasilitas sanitasi, personal hiegene, sarana pengolahan air minum dan administrasi air baku)

Parameter Mikrobiologi (*E.Coli* dan *Coliform*)

Parameter Tambahan (Suhu, pH, Warna dan Bau) Universitas **Esa**

Studi analisis hygiene sanitasi terhadap uji kualitas air minum

Universitas

Esa Unggul

Universitas ESa

Universitas Esa Undqui

BAB IV

METODE PENELITIAN

Bahan dan Alat Penelitian

Bahan dan alat dari penelitian ini yang digunakan diantaranya lembar observasi, lembar wawancara hygiene sanitasi dari Depot Air Minum Isi Ulang. Instrumen penelitian yang digunakan adalah kuesioner yang dibuat dari peraturan menteri kesehatan no 43 tahun 2014.

Waktu dan Tempat Penelitian

Penelitian akan dilaksanakan pada bulan Juni- Desember 2022. Penelitian dilaksanakan di Kelurahan Gebang Raya Kota Tanggerang. Rentang waktu tersebut dimanfaatkan mulai dari penyusunan proposal, observasi awal, pengumpulan data, analisis data hingga penyusunan laporan akhir.

Pengumpulan data

a. Data primer

Data primer didapat dari hasil pemeriksaan laboratorium mikrobiologi di Laboratorium Kesehatan Daerah Kota Tangerang mengenai keberadaan mikrobiologi (*Escherichia coli dan coliform*) dan beberapa parameter tambahan yaitu bau, suhu, pH dan kekeruhan yang terkandung dalam air minum isi ulang, kemudian melakukan observasi, wawancara dengan menggunakan kuesioner yang dimodifikasi dari Peraturan Menteri Kesehatan no 43 tahun 2014

b. Data Sekunder

Data sekunder terdiri dari data laporan sanitasi tahunan Puskesmas Kelurahan Gebang Raya Tanggerang.

Analisa Data

Jenis penelitian ini adal<mark>ah u</mark>ji laboratorium, analis<mark>is</mark> *cross sectional* dan analisis deskriptif. Tujuannya adalah untuk mengetahui apakah sampel air yang diambil dari

Universitas Esa Unggul

Uni29ersitas

masing-masing depot air isi ulang tersebut baik dan layak untuk dikonsumsi oleh masyarakat dan sudah sesuai dengan aturan Permenkes 492 tahun 2010. Pengambilan sampel air minum dan observasi santasi depot dilakukan dengan teknik sampling total sampling dengan melakukan pemeriksaan pada 17 depot air minum yang ada, khusus untuk pemeriksaan penjamah (*personal higiene*) dilakukan teknik random sampling kepada para operator yang bertugas melayani proses produksi air minum maupun pelayanan konsumen dengan sistem undian, untuk penjamah memiliki kriteria inklusi yakni, pekerja yang aktif bekerja sebagai pelayan konsumen dan proses produksi, pekerja mampu menjadi responden dan berkomunikasi dengan baik. Sampel air minum yang diambil yakni air minum yang sudah diproses diambil langsung dari tempat/kran air minum isi ulang, sampel air minum diambil sebanyak 100ml dengan botol steril di 17 depot air minum

Pemeriksaan Mikrobiologi Bakteri Escherichia coli & coliform

Keberadaan bakteri (*Escherichia coli dan coliform*) Pengumpulan data menggunakan data primer melalui pemeriksaan laboratorium yg akan dilakukan di laboratorium mikrobiologi di Laboratorium Kesehatan Daerah Kota Tangerang. Pengukuran *Escherichia coli dan Coliform* dilakukan dengan menggunakan alat *Quanty Tray 2000* dengan reagen *Colilert-18* dengan metode analisis MPN (*Most Probable Number*). Adapun prosedur pengukuran bakteri sebagai berikut.

1.1 Pemeriksaan bakteri *Escherichia coli & coliform*a. Tambahkan satu media colilert-18 (2,8g) ke dalam botol kaca steril, lalu tambahkan 100 ml sampel air minum ke dalam botol tersebut lalu homogenkan

Gambar 1 Media Colilert-18

Gambar 2 Botol Steril

Gambar 3 Bio Safety

b. Tuangkan secara aseptik ke dalam wadah Quanty Tray 2000.

Gambar 4 Quanty Tray Shield

- c. Masukan ke dalam mesin segel wadah
- d. Inkubasi pada suhu (36°C) selama 18-22 jam bakteri *Echerichia coli dan coliform*
- e. Periksa hasil setelah inkubasi 18-22 jam

Universitas Esa Unggul Uni31ersitas Esa U

f. Untuk pembacaan hasil *Escherichia coli* harus dibawah sinar UV (365nm) diruangan gelap atau diruangan yang mengaburkan cahaya sekitar. Hasil positif untuk *Escherchia coli* ditunjukan dengan adanya *fluoresensi* (cahaya berpendar biru)

Gambar 5 Contoh Hasil Positif Escherichia coli

g. Jika hasil samar-samar setelah 18 jam, inkubasi kembali hingga 22 jam.

Gambar 6 Inkubator Thermo

h. Jumlah bakteri pada *Quanty Tray 2000* yang positif, MPN/100ml untuk bakteri *Escherichia coli* dapat dihitung dengan mengacu pada tabel statistic atau dengan menggunakan program generator MPN computer, lihat tabel B1 dan B2 dilampiran untuk *Quanty Tray 2000*.

Esa Undqu

Uni32ersitas ES

i. Baku mutu air minum yang digunakan yakni Permenkes No 492 Tahun 2010, yang menyatakan tidak boleh ada kandungan bakteri dalam air minum (jumlah bakteri *Escherichia coli dan coliform* : 0/100ml)

Pemeriksaan pH

- 1. Dihidupkan alat *pHmeter* dengan cara:
 - a. Ditekan tombol "ON/OFF" pada alat.
 - b. Dibuka tutup elektroda.
 - c. Dilakukan kalibrasi dengan larutan buffer pH 4,0; 7,0; 9,0 dengan menekan "CAL".
 - d. Kalibrasi selesai ditandai dengan munculnya nilai slope 100 ± 5%, simpan dan transfer nilai slope tersebut ke alat dengan cara menekan DATA lalu CALIBRATION, INLABEX dan TRANSFER, selanjutnya tekan EXIT.
- 2. Alat siap digunakan.
- 3. Diukur pH contoh uji dengan menekan "**READ**".
- 4. Jika pengujian telah selesai, bilas elektroda dengan aquades, lap dengan tissue dan pasang kembali tutup elektroda. Dimatikan alat dengan menekan tombol "ON/OFF".

Pemeriksaan warna dalam sample air secara spektofotometri

- a. Untuk memastikan bahwa penetapan warna dalam sampel air dilakukan dengan cara yang benar, sehingga diperoleh hasil yang akurat.
- b. Sampel diuji sesaat setelah sampel sampai diterima, maksimun 2 hari dengan cara didinginkan dalam lemari pendingin.
 - 1. Kuvet
 - 2. Corong
 - Peralatan: 3. Gelas piala 10 mL
 - 4. Spektrofotometer DR 2800 HACH
 - 5. Spektrofotometer DR 5000 HACH
 - Bahan: 1. Kertas saring berpori 0,45 μm
 - 2. Akuades

Tata cara penetapan warna dalam sampel air minum dan air bersih

- 1. Disusun alat penyaring.
- 2. Dibilas filter dengan menuangkan kira-kira 50 mL akuades ke filter, dibuang air bilasan tersebut.
- 3. Dituangkan akuades 50 mL lagi ke dalam penyaring.
- 4. Diisi kuvet dengan 25 mL akuades yang telah disaring sebelumnya, ditandai sebagai blangko.
- 5. Ditekan program untuk pengukuran warna.
- 6. Diputar panjang gelombang hingga angka di layar menunjukan 455 nm.
- 7. Ditekan READ/ENTER, sampai muncul program units **PtCo color**.
- 8. Dituangkan 50 mL sampel melalui filter, untuk disaring
- 9. Diisi kuvet dengan 25 mL larutan sampel yang telah disaring tadi.
- 10. Dimasukkan blanko ke dalam tempat kuvet, ditekan zero.
- 11. Dimasukakn sampel yang telah disiapkan ke dalam tempat kuvet, lalu tekan read.
- 12. Dicatat hasil pengukuran dalam buku kerja.
- 13. Lakukan analisis duplo dengan frekuensi 5-10% per satu seri pengukuran atau minimal 1 kali untuk jumlah contoh uji < 10 sebagai kontrol ketelitian analisis dengan % RPD < 15%.

 $\% \text{ RDP} = \left| \frac{\text{Hasil pengukuran-Duplikat Pengukuran}}{(\text{Hasil pengukuran+Duplikat pengukuran})/2} \right| x 100\%$

Pemeriksaan suhu dalam sample air dengan menggunakan thermometer

Untuk memastikan bahwa penetapan suhu dalam sampel air dilakukan dengan cara yang benar, sehingga diperoleh hasil yang akurat.

Sampel diuji sesaat setelah sampel diterima hingga satu minggu setelah penerimaan disimpan dalam lemari pendingin tanpa penambahan pengawet.

Peralatan yang digunakan dalam pengukuran suhu ini adalah Termometer air raksa yang mempunyai skala 250°F

Tata cara penetapan suhu dalam sampel air

Penetapan contoh uji air permukaan

- 1. Termometer langsung dicelupkan ke dalan contoh uji dan biarkan 2 sampai dengan 5 menit sampai thermometer menunjukan nilai yang stabil.
- 2. Catat pembacaan skala thermometer tanpa mengangkat lebih dahulu thermometer dari air.
- 3. Dihitung skala yang terbaca dengan rumus konversi t °F ke t °C.

Penetapan contoh uji air pada kedalaman tertentu

- 1. Pasang thermometer pada alat pengambil contoh uji.
- 2. Memasukan alat pengambil contoh uji kedalam air pada kedalaman tertentu untuk mengambil contoh uji.
- 3. Tarik alat pengambil contoh uji sampai ke permukaan.
- 4. Catat skala yang ditunjukan thermometer sebelum contoh air dikeluarkan dari alat pengambil contoh.
- 5. Dihitung skala yang terbaca dengan rumus konversi t °F ke t °C.
- 6. Dicatat hasil pengukuran dalam buku kerja.
- 7. Hasil uji dicatat dalam satu decimal.
- 8. Lakukan analisis duplo dengan frekuensi 5-10% per satu seri pengukuran atau minimal 1 kali untuk jumlah contoh uji< 10 sebagai kontrol ketelitian analisis dengan % RPD < 10%</p>

% RPD=
$$\left| \frac{\text{Hasil pengukuran-Duplikat Pengukuran}}{(\text{Hasil pengukuran+Duplikat pengukuran})/2} \right| x 100\%$$

Perhitungan Konversi:

t °Fahreheit =
$$\frac{5}{9}$$
x(t - 32)=t °Celsius

Pemeriksaan Sanitasi Tempat Pengolahan Air Minum

Pemeriksaan tempat depot air minum dilakukan menggunakan pengamatan/observasi dengan lembar observasi. Observasi dilakukan dengan 5 pertanyaan untuk mengamati lokasi, tata ruang, kualitas ruangan yang dipakai dalam proses produksi dan pelayanan konsumen air minum isi ulang. Kriteria/kategori skor Adapun sebagai berikut, jawaban

Ya (memenuhi syarat) = skor 1 dan Tidak (tidak memenuhi syarat) = skor 0 dengan cut off point yang dilihat dari uji normalitas diperoleh hasil untuk kategori Menenuhi Syarat median≥3 dan Tidak memenuhi syarat < 3

Pemeriksaan Penjamah (Personal Hygiene)

Pemeriksaan penjamah depot dilakukan menggunakan wawancara dengan lembar kuesioner. Pemilihan responden dilakukan dengan teknik random sampling menggunakan undian. Kategori inklusi dari responden penjamah antara lain, pekerja yang aktif bekerja sebagai pelayan konsumen dan proses produksi, pekerja mampu menjadi responden dan berkomunikasi dengan baik. Wawancara dilakukan dengan 5 pertanyaan meliputi kesehatan responden, kebiasaan mencuci tangan, kepimilikan sertifikat khusus penjamah. Kriteria/kategori skor Adapun sebagai berikut, jawaban Ya (memenuhi syarat) = skor 1 dan Tidak (tidak memenuhi syarat) = skor 0, dengan cut off point yang dilihat dari uji normalitas diperoleh hasil untuk kategori Menenuhi Syarat median ≥ 2 dan Tidak memenuhi syarat < 2

Pemeriksaan Sanitasi Tempat

Pemeriksaan tempat depot air minum dilakukan menggunakan pengamatan/observasi dengan lembar observasi. Observasi dilakukan dengan 5 pertanyaan untuk mengamati lokasi, tata ruang, kualitas ruangan yang dipakai dalam proses produksi dan pelayanan konsumen air minum isi ulang. Kriteria/kategori skor Adapun sebagai berikut, jawaban Ya (memenuhi syarat) = skor 1 dan Tidak (tidak memenuhi syarat) = skor 0 dengan *cut off point* yang dilihat dari uji normalitas diperoleh hasil untuk kategori Menenuhi Syarat median ≥ 3 dan Tidak memenuhi syarat < 3

Jadwal Penelitian

Table 3 Jadwal Penelitian Hingga Publikasi

			$r \sim c$								
	OTITY	2131	Las		Wak	tu Pela	aksanaa	an		vers	Itas
No	Jenis Kegiatan	Jun	Jul	Agust	Sept	Okt	Nov	Des	Jan	Feb	Mar
1	Persiapan proposal										
	Melaksanakan survey pendahuluan										
	ke beberapa Depot air minum isi										
2	ulang										
3	Melakukan uji Laboratorium										
4	Melakukan observasi										
5	Pengolahan data dan Analisa data										
6	Penyusunan laporan akhir										
7	Publikasi jurnal nasional/internasional										

ggul

Iniversitas Esa Unggul Universitas **Esa**

Uni37ersitas

BAB V HASIL DAN PEMBAHASAN

4.1 HASIL

Keberadaan bakteri (*Escherichia coli dan coliform*) pada air minum isi ulang diperoleh dari hasil uji laboratorium dengan parameter uji mikrobiologi (*Escherichia coli dan coliform*) dengan metode uji MPN (*Most Probable Number*), dengan standar Permenkes No 421 Tahun 2010 tentang persyaratan air minum yang dimana kadar maksimum bakteri yang terdapat pada air minum yaitu 0 per 100ml air minum.

Table 4 Hasil Uji Laboratorium Pemeriksaan Air Minum

No	Kode Depot	E-Choli (MPN)	Coliform (MPN)	Suhu	Warna	Bau	Ph	Keterangan
1	Depot 1(HR)	4	35	26,1	1 NTU	Tidak Berbau	7,17	tidak memenuhi syarat
2	Depot 2(AR)	0	0	28	1 NTU	Tidak Berbau	7,75	memenuhi sy <mark>a</mark> rat
3	Depot 3(AL)	0	1	28	5 NTU	Tidak Berbau	7,67	tidak meme <mark>nu</mark> hi syar <mark>at</mark>
4	Depot 4(BN)	0	0	27	2 NTU	Tidak Berbau	7,1	memenuhi syarat
5	Depot 5(FW)	0	0	28	1 NTU	Tidak Berbau	6,73	memenuhi sy <mark>arat</mark>
6	Depot 6(NN)	0	0	28	0 NTU	Tidak Berbau	7,3	memenuhi syarat
7	Depot 7(NR)	5	16	28	2 NTU	Tidak Berbau	6,96	tidak memenuhi syarat
8	Depot 8(SK)	108	866	25,2	1 NTU	Tidak Berbau	7,67	tidak memenuhi syarat
9	Depot 9(TJ)	1	56	28,5	1 NTU	Tidak Berbau	7,51	tidak memenuhi syarat
10	Depot 10(ZR)	0	1	28	5 NTU	Tidak Berbau	7,44	tidak memenuhi syarat
11	Depot 11(AS)	8	66	27,1	1 NTU	Tidak Berbau	7,3	tidak memenuhi syarat
12	Depot 12 (KZ)	0	145	26,5	1 NTU	Tidak Berbau	7	tidak memenuhi syarat
13	Depot 13 (AI)	0	0	26,3	1 NTU	Tidak Berbau	7,11	memenuhi syarat
14	Depot 14 (FJ)	0	0	25,4	1 NTU	Tidak Berbau	6,89	memenuhi syarat
15	Depot 15 (IL)	1	10	27	2 NTU	Tidak Berbau	6,67	tidak memenuhi syarat
16	Depot 16 (YT)	0	0	25,6	1 NTU	Tidak Berbau	7,28	memenuhi sy <mark>a</mark> rat
17	Depot 17 (MD)	0	0	26,2	1 NTU	Tidak Berbau	7,05	memenuh <mark>i syar</mark> at

Berdasarkan table 1 hasil analisis didapatkan keberadaan bakteri pada air minum isi ulang di Wilayah Kelurahan Gebang Raya yang memenuhi syarat secara mikrobiologi adalah sebanyak 8 depot dan yang tidak memenuhi syarat secara mikrobiologi terdapat sebanyak 9 depot air minum isi ulang. Keberadaan bakteri paling banyak didapatkan sebesar 108 per 100ml pada parameter *Escherichia coli* dan 866 per 100ml pada parameter *coliform* pada sampel air depot dengan kode Depot 8 (SK). Pada parameter suhu, warna dan pH sebagai parameter tambahan masuk dalam kategori memenuhi standar baku mutu.

Table 5 Persentase Gambaran Hasil Pemeriksaan Uji Kualitas Air Minum dan Hygiene Sanitasi Depot Air Minum

Variable	Standar baku mutu Permenkes 492 tahun 2010	Frekuensi	Persentase (%)
Coliform	Memenuhi	8	47,1
	Tid <mark>a</mark> k Memenuhi	9	52,9
E-coli	Memenuhi Memenuhi	11	64,7
	Tidak Memenuhi	6	35,3
Suhu	Memenuhi	17	100
	Tidak Memenuhi	0	0
pH	Memenuhi	17	100 📗
	Tidak Memenuhi	0	0
Sanitasi Tempat	Memenuhi	10	58,8
	Tidak Memenuhi	7	41,2
Sarana	Memenuhi	10	58,8
	Tidak Memenuhi	7	41,2
Kelengkapan Fasilitas	Memenuhi	9	52,9
	Tidak Memenuhi	8	47,1
Penjamah	Memenuhi	9	52,9
	Tidak Memenuhi	8	47,1
Air Baku	Memenuhi	14	82,3
	Tidak Memenuhi	3	17,7

Hasil penelitian dari 17 depot menunjukan proporsi hasil air minum paling tinggi pada sampel air minum yang tidak memenuhi syarat yakni 9 (52,9%) sampel, pada sanitasi tempat proposrsi paling tinggi didapatkan pada tempat depot memenuhi syarat yakni 10 (58,8%), pada

sarana pengolahan air minum didapatkan hasil proporsi paling tinggi pada sarana yang memenuhi syarat yakni 10 (58,8%), pada kelengkapan fasilitas sanitasi proposrsi paling tinggi didapatkan pada kelengkapan fasilitas sanitasi depot memenuhi syarat yakni 9 (52,9%), pada penjamah proporsi paling tinggi didapatkan pada penjamah depot yang memenuhi syarat yakni 9 (52,9%), pada administrasi air baku proposrsi paling tinggi didapatkan pada administrasi air baku depot memenuhi syarat yakni 14 (82,3%).

Tabel 3. Hasil Analisis Korelasi Antara Sanitasi Tempat, Sarana Pengolahan Air Minum, Kelengkapan Fasilitas Sanitasi, Penjamah dan Air Baku Dengan Keberadaan Mikrobiologi Pada Air Minum

	Kel	beradaan	Mikro	biologi				
Tempat	Me	Tidak menuhi yarat		menuhi yarat	Т	'otal	P Value	PR (95% CI)
•	n	%	n	%	n	%		,
Tidak Memenuhi Syarat	7	100	0	0	7	100,0	0,002	0,200 (0,058 –
Memenuhi Syarat	2	20	8	80	10	100,0	0,002	0,691)
Sarana Pengolahan Air	Me	Tidak men <mark>uhi</mark> yarat	_	menuhi yarat	Т	'otal	P	PR (95%
Minum	n	%	n	%	n	%	Value	CI)
Tidak Memenuhi Syarat	7	100	0	0	7	100		0,200 (0,058 –
Memenuhi Syarat	2	20	8	80	10	100	0,002	0,691)
Kelengkapan Fasilitas	Me	'idak menuhi yarat		menuhi yarat	Т	'otal	P	PR (95%
Sanitasi	n	%	n	%	n	%	Value	CI)
Tidak Memenuhi Syarat	7	87,5	1	12,5	8	100		24.500 (0,963 –
Memenuhi Syarat	2	22,2	7	77,8	9	100	0,015	40.223)
Penjamah	Me	idak menuhi yarat		menuhi yarat	Т	otal	P	PR (95%
	n	%	n	%	n	%	Value	CI)
Tidak Memenuhi Syarat	8	100	0	0	8	100		0,111 (0,018 –
Memenuhi Syarat	1	11,1	8	88,9	9	100	0,000	0,763)
		idak	Mei	menuhi	т	otal		PR
Administrasi Air Baku		men <mark>uhi</mark> yarat	S	yarat		otai	P	(95% CI)

Universitas

Uni40ersitas

Tidak Memenuhi Syarat	3	100	0	0	3	100		0,429
Memenuhi Syarat	6	42,9	8	57,1	14	1000	0,206	(0,234 – 0,785)

Universitas

Pada tabel 3 dapat diketahui pada variabel tempat menunjukkan bahwa dari 7 depot yang memiliki sanitasi tempat yang tidak memenuhi syarat dengan Keberadaan mikrobiologi yang tidak memenuhi syarat yaitu sebanyak 7 depot (100%), sedangkan dari 10 depot yang memiliki sanitasi tempat memenuhi syarat dengan keberadaan mikrobiologi yang memenuhi syarat yaitu sebanyak 8 depot (80%). Dari hasil uji analisis menggunakan uji Fisher's diperoleh nilai p = 0.002 (<0.05), sehingga Ha diterima. Hal ini berarti terdapat hubungan antara tempat dengan keberadaan bakteri pada sampel air minum isi ulang. Pada variabel menunjukkan bahwa dari 7 depot yang memiliki sarana pengolahan air minum yang tidak memenuhi syarat dengan Keberadaan mikrobiologi yang tidak memenuhi syarat yaitu sebanyak 7 depot (100%), sedangkan dari 10 depot yang memiliki sarana pengolahan air minum memenuhi syarat dengan keberadaan mikrobiologi yang memenuhi syarat yaitu sebanyak 8 depot (80%). Dari hasil uji analisis menggunakan uji Fisher's diperoleh nilai p = 0.002 (<0.05), sehingga Ha diterima.

Hal ini berarti terdapat hubungan antara tempat dengan keberadaan bakteri pada sampel air minum isi ulang. Pada variabel menunjukkan bahwa dari 8 depot yang memiliki kelengkapan fasilitas sanitasi yang tidak memenuhi syarat dengan Keberadaan mikrobiologi yang tidak memenuhi syarat yaitu sebanyak 7 depot (87,5%), sedangkan dari 9 depot yang memiliki kelengkapan fasilitas sanitasi memenuhi syarat dengan keberadaan mikrobiologi yang memenuhi syarat yaitu sebanyak 7 depot (77,8%). Dari hasil uji analisis Fisher's diperoleh nilai p = 0,015 (<0,05), sehingga Ha diterima. Hal ini berarti terdapat hubungan antara kelengkapan fasilitas sanitasi dengan keberadaan bakteri pada air minum isi ulang.

Berdasarkan hasil analisis didapatka juga nilai PR CI 95% sebesar 24.500 (0,963 – 40.223), yang berarti kelengkapan fasilitas sanitasi depot yang tidak memenuhi syarat memiliki peluang sebesar 24,500 kali memeliki air minum yang tercemar keberadaan mikrobiologi dibandingkan kelengkapan fasilitas sanitasi yang memenuhi syarat. Pada variabel penjamah 11 menunjukkan bahwa dari 8 depot yang memiliki penjamah yang tidak memenuhi syarat dengan Keberadaan mikrobiologi yang tidak memenuhi syarat yaitu sebanyak 8 depot (100%),

Universitas Esa Unggul Uni41ersitas

sedangkan dari 9 depot yang memiliki penjamah memenuhi syarat dengan keberadaan mikrobiologi yang memenuhi syarat yaitu sebanyak 8 depot (88,9%).

Dari hasil analisis uji *Fisher's* diperoleh nilai p = 0,000 (<0,05) sehingga Ha diterima. Hal ini berarti menunujukan bahwa ada hubungan antara peronal hygiene penjamah dengan keberadaan bakteri pada air minum isi ulang. Pada variabel administrasi air baku menunjukkan bahwa dari 3 depot yang memiliki administrasi air baku yang tidak memenuhi syarat dengan Keberadaan mikrobiologi yang tidak memenuhi syarat yaitu sebanyak 3 depot (100%), sedangkan dari 14 depot yang memiliki administrasi air baku memenuhi syarat dengan keberadaan mikrobiologi yang memenuhi syarat yaitu sebanyak 8 depot (57,1%). Dari hasil analisis uji *Chi-square* nilai *Fisher's* diperoleh nilai p = 0,206 (<0,05) sehingga Ha Tidak diterima. Hal ini berarti menunjukan bahwa tidak terdapat hubungan antara air baku dengan keberadaan bakteri pada sampel air minum isi ulang.

4.2 PEMBAHASAN

Gambaran Parameter Mikrobiologi sebagai parameter yang langsung berhubungan dengan kesehatan

Berdasarkan hasil pemeriksaan uji laboratorium pada penelitian ini ada 17 sampel air minum isi ulang yang diambil dari 17 depot air minum isi ulang di Wilayah Kelurahan Gebang Raya, didapatkan hasil pemeriksaan uji laboratorium menunjukan ada 9 (52,94 %) depot dengan air minum isi ulang yang tidak memenuhi syarat permenkes no 492 tahun 2010. Sejalan dengan penelitian (Librianti, 2019) di Kecamatan Sukmajaya Kota Depok didapat kan hasil dari 31 depot yang diperiksa 16 (51,6%) diantaranya tidak memenuhi syarat angka total *coliform*, sementara penelitian (Arumsari, 2021) di Kecamatan Mondokan Kota Sragen didapatkan hasil dari 27 depot yang diperiksa 6 (22,2%) diantaranya tidak memenuhi syarat karena tercemar bakteri. Penelitian (Badun, 2021) dari 13 sampel air minum depot yang diperiksa terdapat 10 (76,9%) diantaranya tidak memenuhi syarat.

Dari hasil pemeriksaan dan observasi terdapat 6 (35,3%) depot yang hasil pemeriksaan air minumnya parameter bakteri *Escherichia coli* melebihi baku mutu Pemenkes No 492 Tahun 2010. Angka paling tinggi pencemaran *Escherichia coli* didapat oleh depot dengan kode no 8 (SK) dengan angka pemeriksaan *MPN* 108/100ml, sementara untuk parameter *coliform* terdapat 9 (52,9%) depot yang hasil pemeriksaan air minumnya melebihi baku mutu Pemenkes

Universitas Esa Undau

Uni42ersitas

No 492 Tahun 2010. Angka paling tinggi pencemaran *coliform* didapat oleh depot dengan kode no 8 (SK) dengan angka pemeriksaan *MPN* 866/100ml. Menurut Permenkes No 492 Tahun 2010, air minum yang dikonsumsi tidak boleh melebihi baku mutu, Adapun baku mutu untuk air minum yakni *MPN* 0/100ml (Kemenkes RI, 2010). Hal ini disebabkan oleh variabel kelengkapan fasilitas sanitasi dan penjamah menjadi yang paling berisiko dalam pencemaran air minum karena dari 7 (87,5%) kelengkapan fasilitas sanitasi depot air minum yang tidak memenuhi syarat memiliki hasil pemeriksaan air minum yang juga tidak memenuhi syarat karena masih kurangnya fasilitas sanitasi seperti tempat mencuci tangan yang dilenkapi dengan sabun, tidak adanya tempat sampah yang tertutup.

Sementara untuk penjamah didapatkan hasil 8 (100%) penjamah depot air minum yang tidak memenuhi syarat memiliki hasil pemeriksaan air minum yang juga tidak memenuhi syarat. Masih banyak penjamah depot yang tidak mencuci tangan saat melayani konsumen, tidak menggunakan pakaian kerja yang bersih dan rapih serta tidak pernah melakukan pemeriksaan kesehatan khusus penjamah minimal 1 tahun sekali, disusul dengan sanitasi tempat dengan 7 tempat depot yang tidak memenuhi syarat karena banyaknya debu di dalam area depot, tidak memiliki lantai dan dinding yang kedap air, memiliki langit-langit yang kotor dan tidak kuat serta tata ruang yang tidak tertata membuat kondisi tempat depot menjadi tidak mudah untuk dibersihkan.

Gambaran Parameter Tambahan (pH, Suhu, Bau dan Warna) sebagai parameter yang tidak langsung berhubungan dengan kesehatan

Keamanan air minum didasari oleh parameter fisika, kimia dan biologi. Sebagai parameter tambahan pH, suhu, bau dan warna pada uji pada 17 depot air minum masuk dalam kategori aman atau sesuai dengan standar baku muku yang telah ditetapkan oleh Permenkes no. 492 tahun 2010 tentang persyaratan kualitas air minum. Standar baku muku yang ditetapkan untuk pH adalah 6,5 – 8,5 sedangkan warna yaitu maksimal adalah 25 NTU. Dari 17 depot hasil yang diperoleh adalah tidak berbau, dan suhu standar rata-rata yaitu 25,5°C - 28°C. Hasrianti dalam Kusnaedi (2016) menyatakan bahwa persyaratan fisik air minum antara lain adalah tidak berwarna, temperature normal, rasanya tawar, tidak berbau, jernih atau tidak keruh serta tidak mengandung zat padatan. Berdasarkan hasil obervasi yang dilakukan pada setiap depot yang digunakan oleh masyarakat parameter fisika dan kimia diantara pH, Bau, warna, suhu masih berada dalam standar layak untuk dikonsumsi.

Universitas Esa Undau Uni43ersitas

BAB VI KESIMPULAN DAN SARAN

KESIMPULAN

Berdasarkan Permenkes No.492 tahun 2010 Kondisi hygiene sanitasi depot air minum isi ulang dikategorikan belum memenuhi syarat, masih ditemukan 9 depot (52,9%) yang air minum isi ulang mengandung Bakhteri *Esceria Coli* dan Bakhteri *Coliform* diatas ambang baku mutu. Kondisi sanitasi tempat, peralatan, sanitasi penjamah, dan air baku pada DAMIU belum dikategorikan baik. Pada penelitian ini hasil observasi yang telah dilakukan kondisi peralatan sterilisasi serta desinfeksi pada depot air minum banyak yang tidak berfungsi dan tidak layak untuk digunakan. Sehingga bakhteri pada sumber air yang digunakan tidak dapat mati secara optimal. Penerapan variable hygiene sanitasi (tempat, perlatan, penjamah dan air baku) merupakan factor penting untuk meningkatkan kualitas air minum. Hygiene sanitasi merupakan upaya kesehatan untuk mengurangi atau menghilangkan pencemaran terhadap air minum. Oleh karena itu, hasil dari penelitian ini menunjukkan bahwa hygiene sanitasi memeiliki hubungan terhadap kualitas air minum.

SARAN

- Pengelola melakukan monitoring sarana pengolahan pengelola dapat menggunakan lembar checklist untuk pemeliharaan lampu UV, microfilter, alat pembilasan galon dan lembar checklist untuk reparasi kerusakan alat.
- Membersihkan dan meminimalisir kotoran dan debu masuk kedalam area depot dengan cara melakukan kegiatan kebersihan wajib yang dilaksanakan setiap hari dipantau melalui checklist
- 3) Pengelola harus memfasilitasi karyawan yang bekerja pada depot air minum untuk mengikuti pelatihan terkait hygiene sanitasi dan personal hygiene serta wajib memfasilitasi karyawan untuk melakukan pemeriksaan personal hygiene (Rectal Swab)
- 4) Pengelola wajib melakukan pemeriksaan air baku ke laboratorium kesehatan daerah terdekat untuk parameter mikrobiologi 1 kali dalam 3 bulan, dan untuk parameter kimia dan fisika 2 kali dalam 1 tahun.

Universitas Esa Unagul Uni44ersitas

5) diharapkan kepada pengelola depot air minum untuk segera mengurus atau meminta surat jaminan pasok air baku ke perusahaan tempat pengambilan air baku.

Esa Unggul

Esa U

DAFTAR PUSTAKA

- Adelina R, W. dan S. (2012). Penilaian Air Minum ISi Ulang Berdasarkan Parameter Fisika dan Kimia di dan luar Jabodetabek. *Jurnal Kefarmasian Indonesia*, 2(2), 48–53.
- Aditya Suhendra. (2013). Tinjauan Terhadap Faktor-Faktor Yang Berhubungan Dengan Terjadinya Kontaminasi Bakteriologi Eschericia Coli Dan Coliform Pada Depot-Depot Air Minum Isi Ulang (AMIU) Di Wilayah Jakarta Pusat. Skripsi Fakultas Kesehatan Masyarakat.
- Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K. dan Walter, P. (2015). Molecular Biology of The Cell. *Garland Science*, *Six editio*.
- Dinas Kesehatan Kota Tangerang. (2020). *Profil Kesehatan Daerah Kota Tangerang*. Dinas Kesehatan Kota Tangerang.
- Dr. Herniwati S.Pd. Kim. M.S. (2020). kesehatan lingkungan (ide riset dan evaluasi kesehatan lingkungan sederhana). In *Kesehatan Lingkungan*. Forum Pemuda Aswaja.
- Dr. Kusmiyati SKM. MPH. (2021). kualitas bakteriologis minuman. In R. R. Rerung (Ed.), *Personal Hygiene dan Sanitasi Lingkungan*. Media Sains Indonesia.
- Hidayanti, M. dan Y. (2010). Pengaruh Lama Waktu Simpan Pada Suhu Ruang Terhadap Kadar Zat Organik Pada Air Minum Isi Ulang. *Prosiding Seminar Nasional Universitas Muhammadiyah Semarang*, 49–54.
- Inggrid Suryanti Surono. Agus Sudibyo. Priyo Waspodo. (2016). *Pengantar Keamanan Pangan Untuk Industri Pangan* (I. Candrawinata (ed.)). CV BUDI UTAMA.
- J Jang et al. (2017). Environmental Escherichia coli. *Ecology and Public Health Implications : Journal of Applied Microbiology 123*, 53. https://doi.org/https://doi.org/10.1111/jam.13468
- eraturan Menteri Kesehatan Republik Indonesia Nomor 32 Tahun 2017 Tentang Standar Baku Mutu Kesehatan Lingkungan Dan Persyaratan Kesehatan Air Untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus Per Aqua dan Pemandian Umum., 1 (2017). https://doi.org/https://doi.org/10.1056/NEJMe0902377
- Kemenkes RI. 2014. (2014). Peraturan Menteri Kesehatan No 43 tentang Higiene Sanitasi Depot Air Minum Tahun 2014. Kementrian Kesehatan RI.
- Kemenkes RI. (2010). Peraturan Menteri Kesehatan Republik Indonesia No.492/MENKES/PER/IV/2010. Tentang Persyaratan Kualitas Air Minum. Kementrian Kesehatan RI.
- Kementerian Koordinator Pembangunan Manusia dan Kebudayaan RI. (2021). *Pembangunan Nasional*.
- Marsono, P. dan. (2013). Uji Kualitas Air MInum Isi Ulang di Kecamatan Sukodono, Sidoardjo ditinjau dari Aspek Perilaku dan Pemeliharaan Alat. *Jurnal Teknik POMITS*, 2(2), 2337–3537.
- Narsi Wahyuni RR dan Susanti Y. (2017). uji kelayakan air minum isi ulang di pasir pengaraian kabupaten rokan hulu riau. *Jurnal Ilmu Pangan Dan Hasil Pertanian 1*, 11.
- Rahayu, W. P., Siti, N., & Ema, K. (2018). Escherichia coli Patogenitas Analisis dan Kajian Risiko. *IPB Press*.
- Kesehatan Air Untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus Per Aqua, dan Pemandian Umum, Permenkes No 32 Tahun 2017. Standar Baku Mutu Kesehatan Lingkungan dan Persyaratan (2017).
- Sherwood, L. (2016). Human Physiology: From Cells to Systems, Ninth Edition. In Cencage Learning.
- Sunarti. R.N. (2016). Uji kualitas air minum isi ulang disekitar kampus UIN raden fatah Palembang. *Jurnal Bioilmi* 2, 40.

LAMPIRAN

Gambar 7 Depot dengan fasilitas yang kurang baik (1)

Uni47ersitas

Gambar 9 Depot dengan fasilitas yang kurang baik (3)

Gambar 10 Penjamah yang tidak memenuhi syarat (1)

Gambar 11 Penjamah yang tidak memenuhi syarat (2)

Universitas Esa Undqui Uni48ersitas ESA

aaul

Universitas **Esa U**

Yang bertandatangan di bawah ini:

Nama : Dr. Erry Yudhya Mulyani, M.Sc

Jabatan : Kepala LPPM

Menugaskan nama dibawah ini:

No	Nama	Jabatan	NIDN	Fakultas
1	Veza azteria,S.SI,M.SI	Ketua	1129108701	Ilmu- Ilmu Kesehatan
2	Ners Ernalinda Rosya S.Kep, M.Kep	Anggota	1001098103	Ilmu-Ilmu Kesehatan
3	Ahmad Irfandi, SKM, MKM	Anggota	0322049201	Ilmu-Ilmu Kesehatan

Untuk melaksanakan kegiatan Penelitian skema Hibah Internal Tahun Pelaksanaan 2022 dengan judul:

"STUDI ANALISIS KUALITAS AIR MINUM TERHADAP HYGIENE SANIT<mark>ASI</mark> PADA DEPOT AIR MINUM ISI ULANG DI KELURAHAN GEBANG RAYA TANGGERANG"

Demikian surat tugas ini dibuat untuk dipergunakan sebagaimana mestinya.

Jakarta, 03 Agustus 2022

Kepala LPPM

Esa Ünggul

Dr. Erry Vudhya Mulyani, M.Sc

NIK. 209100388

Universitas Esa Unggul Uni49ersitas ESa Lampiran 1: Surat Pernyataan ketua Pelaksana

Surat Pernyataan Ketua Pelaksana

Program Penelitian

Yang bertanda tangan di bawah ini:

Nama : Veza azteria, S. Si, M. Si

NIDN/ NIK : 1129108701

Fakultas/ Prodi : Ilmu Kesehatan/Kesehatan Masyarakat

Jabatan Fungsional : Lektor 200 (III/C)

Dengan ini saya menyatakan bahwa proposal program penelitian yang diajukan dengan judul:

"STUDI ANALISIS KUALITAS AIR MINUM TERHADAP HYGIENE SANITASI PADA DEPOT AIR MINUM ISI ULANG DI KELURAHAN GEBANG RAYA TANGGERANG"

Yang saya usulkan dalam skema hibah internal Universitas Esa Unggul tahun 2022 bersifat original dan belum dibiayai oleh Lembaga/ sumber dana lain.

Bilamana diketahui dikemudian hari adanya indikasi ketidak jujuran/ itikad kurang baik sebagaimana dimaksdu di atas, makan kegiatan ini dibatalkan dan saya bersedia mengembalikan dana yang telah diterima kepada pihak Universitas Esa Unggul melalui LPPM. Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Jakarta, 22 November 2022

Yang menyatakan,

(Veza Azteria, S.Si, M.Si)

1129108701

Universitas Esa Undqui Uni50ersitas

Ketua Peneliti

A. Identitas Diri

1	Nama Lengkap	Veza Azteria S.Si, M.Si
2	Jenis Kelamin	Perempuan
3	Tempat Tanggal Lahir	Sungai Penuh, 29 Oktober 1987
4	NIDN	1129108701
5	e-mail	Veza.azteria@esaunggul.ac.id
6	No Telephone	081366192620
7	Mata Kuliah yang diampu	Analisis Mengenai Dampak Lingkungan Dasar Kesehatan Lingkungan Sistem Manajemen Audit Lingkungan Penyakit Akibat Kerja Penulisan Ilmiah Pengembangan Media Komunikasi Kesehatan Pendidikan Kesehatan dan Ilmu Perilaku Rekayasa Sanitasi Lingkungan

B. Riwayat Pendidikan

	~ .	2.4	~ •	
Program	S-1	S-2	S-3	
Nama Perguruan Tinggi	Institut Pertanian Bogor	Institut Pertanian BOgor		
Bidang Ilmu	Meteorologi	Ilmu Lingkungan		
Tahun Masuk – Lulus	2005-2009	2010-2013		
Judul Skripsi-Tesis-		The accuracy of fire		
Disertesi	The Valuable Of Equatorial Atmosphere Radar (Ear)	occurrence indicator and		
	Data To Study Monsoon In	identification of background		
	The West Area Indonesia	of forest fire causes in Tebo		
		Regency Jambi Province		
Nama Pembimbing	Dr.Ir.Sobry effendi,M.SI	Dr.Ir.Lailan Syaufina,M.Sc		
/Promotor				

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir (bukan skripsi, tesis, maupun disertasi)

No	Tahun	Indul Danglitian	Pendanaan	
NO	1 anun	Judul Penelitian	Sumber*	Jml (Juta Rp)
1	2016	Efektivitas penanganan limbah padat di Rumah Sakit Umum Dr. Kanujoso Djatiwibowo Balikpapan		Unive
2	2016	Penanganan bahan kimia berbahaya pada bagian pengecatan mobil (Studi Kasus : Auto 2000 Body and Paint Balikpapan)		ES
3	2017	Pengelolaan limbah minyak pelumas bekas sebagai upaya pengendalian pencemaran lingkungan (Studi Kasus : Astra Motor Balikpapan)		
4	2019	Identifikasi keselamatan penanganan limbah dan pelumas pada PT Altrak 1978 Balikpapan		
5	2020	Pengelolaan Limbah Minyak Pelumas Sebagai Upaya Pengendalian Pencemaran Lingkungan		
6	2020	Faktor-Faktor Yang Berhubungan Dengan Stress Kerja Pada Perawat Rawat Inap Di Rs X Depok Pada Tahun 2020		
7	2021	Analisis Pengelolaan Limbah Medis Di Rumah Sakit Anak Dan Bunda Harapan Kita Jakarta Tahun 2016		Unive

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No	Tahun	Indul Dangah dian Irangda Magyanakat	Pendanaan	
No	1 anun	Judul Pengabdian kepada Masyarakat	Sumber*	Jml (Juta Rp)
1	2020	Webinar Penggunaan Desain		-
		Systematic Review Dalam Pelaksanaan		
		Penelitian Selama Pandemi Covid-19		
		Di Universitas Esa Unggul		
2	2020	Strategi Deteksi Dini Resiko Kaki		-
		Diabetik Pada Penderita Diabetes Tipe		
		2 Di Wilayah Kelurahan Duri Kepa		
3	2021	Tantangan Limbah (Sampah) Infeksius		
		Covid-19 Rumah Tangga Dan Tempat-		
		Tempat Umum		
4				

Universitas Esa Undau Uni52ersitas

5			
6			

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

	T	Universitas	T	Univ
No	Tahun	Judul Artikel Ilmiah	Nama Jurnal	Volume/ Nomor/Tahun
1	2017	Identifikasi Keselamatan Penanganan	Jurnal	<u>Vol 4, No 1</u>
		Limbah Pelumas Pada PT.Altrak 1978	Biologi,Lingkun	(2017): Agustus
		Balikpapan	gan dan	alamat :
			Kesehatan	https://ojs.uma.a
			(SINTA 3)	c.id/index.php/bi
				olink/article/vie
				w/964
2	2020	Pengelolaan Limbah Minyak Pelumas	Jurnal	Vol 6, No 2
		Sebagai Upaya Pengendalian	Biologi,Lingkun	(2020): Februari
		Pencemaran Lingkungan	gan <mark>da</mark> n	alamat :
			Kes <mark>e</mark> hatan	https://ojs.uma.a
			(SINTA 3)	c.id/index.php/bi
				olink/article/vie
		Universites		w/2725
3	2021	Docking and Molecular Dynamic	Jurnal Kimia	https://ejournal.u
		Simulations to Search Curcumin	Sains dan	ndip.ac.id/index.
		Analogue Compounds as Potential	Teknologi	php/ksa
		Inhibitor Against SARS-CoV-2: A	(SINTA 2)	
		Computational Study		
4	2021	Factors related to production employee's	Jurnal Ilmu	https://jurnal.une
		dermatitis	Kesehatan	j.ac.id/index.php/
		Contact at pt. Argapura indonesia year	Masyarakat	IKESMA/issue/v
		2020		iew/1016
	1			l

Esa Unggul

Uni53ersitas

F. Pemakalah Seminar Ilmiah (*Oral P<mark>re</mark>sentation*) dalam 5 Tahun T<mark>er</mark>akhir

No	Nama Pertemuan Ilmiah/Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
1	Univers	itas	Univ
2	Eco	I I to co court	E
3	ESa	Oliggu	
4			
5			

G. Karya Buku dalam 5 Tahun Terakhir

No.	Judul Buku	Tahun	Jumlah Halaman	Penerbit

H. Perolehan HKI dalam 10 Tahun Terakhir

No	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID

I. Pengalaman Merumuskan Kebijak<mark>an Publik/Rekayasa Sosi</mark>al Lainnya dalam 10 Tahun Terakhir

	No	Judul/Tema/Rekayasa Sosial lainnya yang telah ditetankan	Tahun	Tempat penerapan	Respons Masvarakat
ŀ				ропогаран	171asyarakar
I		ESGLUII			ES

J. Penghargaan dalam 10 Tahun Terakhir (dari pemerintah, asosiasi, atau institusi lainnya)

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun	
1				
2				

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan program penelitian Universitas Esa Unggul.

Jakarta, 3 April 2021 Pengusul

Universitas Esa Undau Uni54ersitas EGA

