CROSSTABS
/TABLES=UI PI JumPar JarKeh PertBB LILA JumTab HB KunANC PenyIbu
BY BerBay
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CC CMH(1)
/CELLS=COUNT EXPECTED
/COUNT ROUND CELL.

Crosstabs Universitas

Input

Missing Value Handling

Comments

Notes
Output Created 23-A

23-AUG-2017 08:07:12

Data

Active Dataset
Filter
Weight
Split File
N of Rows in Working
Data File
Definition of Missing

Cases Used

Syntax

Resources

Processor Time
Elapsed Time
Dimensions Requested
Cells Available

D:\Materi Kuliah\Skripsi\PROPOSAL FIX\SPSS\Data SPSS Skripsi.sav DataSet1

<none>
<none>
<none>

55

User-defined missing values are treated as missing.
Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.

CROSSTABS
/TABLES=UI PI JumPar JarKeh
PertBB LILA JumTab HB KunANC
PenyIbu BY BerBay
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CC CMH(1)
/CELLS=COUNT EXPECTED
/COUNT ROUND CELL.
00:00:00.14

00:00:00.20 2 349496

Esa Unggul

Case Processing Summary

	Case	Cases				
	Va	lid	Mis Mis	sing	То	tal
	N	Percent	N	Percent	N	Percent
Usia Ibu Saat Kehamilan * Berat Bayi Lahir	55	100.0%	0	0.0%	55	100.0%
Pendidikan Terakhir Ibu * Berat Bayi Lahir	55	100.0%	0	0.0%	55	100.0%
Jumlah Paritas * Berat Bayi Lahir	55	100.0%	0	0.0%	55	100.0%
Jarak Kehamilan * Berat Bayi Lahir	55	100.0%	0	0.0%	55	100.0%
Pertambahan BB Ibu Selama Kehamilan Berdasarkan IMT Ibu Sebelum Hamil * Berat Bayi Lahir	55	100.0%	0	0.0%	55	100.0%
Status Gizi Ibu Berdasarkan LILA * Berat Bayi Lahir	55	100.0%	0	0.0%	55	100.0%
Jumlah Tablet yang dikonsumsi * Berat Bayi Lahir	55	100.0%	0	0.0%	55	100.0%
HB Terakhir Ibu * Berat Bayi Lahir	55	100.0%	0	0.0%	55	100.0%
Kunjungan ANC * Berat Bayi Lahir	55	100.0%	0	0.0%	55	100.0%
Penyakit Penyerta Ibu selama Kehamilan * Berat Bayi Lahir	55 ersita	100.0%	0	0.0%	55	100.0%

Usia Ibu Saat Kehamilan * Berat Bayi Lahir

Crosstab

				t Bayi ahir	
			BBLR	Normal	Total
Usia Ibu Saat	Resiko	Count	22	12	34
Kehamilan	Tinggi	Expected Count	17.3	16.7	34.0
	Tidak	Count	6	15	21
	Resiko Tin <mark>gg</mark> i	Expected Count	10.7	10.3	21.0
Total		Count	28	27	55
		Expected Count	28.0	27.0	55.0

Esa Unggul

		CIII Se	uare rests		
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	6.782 ^a	1	.009		
Continuity Correction ^b	5.414	1	.020		
Likelihood Ratio	6.952	1	.008		
Fisher's Exact Test	ersit	a <u>s</u>		.013	.010
Linear-by-Linear Association	6.659	1	.010	ш	
N of Valid Cases	55				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 10.31.

b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient	.331	.009
N of Valid Cases	<u>55</u>	

Tests of Homogeneity of the Odds Ratio

1 4545 (or morning content	01 0110 0 01	45 1100010
	Chi-Squared	df	Asymptotic Significance (2-sided)
Breslow-Day Tarone's	.000	$\frac{0}{0}$	

Tests of Conditional Independence

I Coto	reses of conditional independence						
			Asymptotic Significance				
	Chi-Squared	df	(2-sided)				
Cochran's	6.782	1	.009				
Mantel-Haenszel	5.315	1	.021				

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Esa Unggul

	Estimate		4.583		
		1.522			
Standardized Error of ln(Estimate)					
Asy <mark>mpt</mark>	otic Significance (2-sided)		.011		
Asymptotic 95%	Common Odds Ratio	Lower Bound	1.409		
Confidence Interval		Upper Bound	14.907		
Haivara	ln(Common Odds Ratio)	Lower Bound	.343		
Univers	Itas	Upper Bound	2.702		

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

Pendidikan Terakhir Ibu * Berat Bayi Lahir

Crosstab

			Berat Ba	ayi Lahir	
			BBLR	Normal	Total
Pendidikan Terakhir Ibu	Rendah	Count	22	14	36
		Expected Count	18.3	17.7	36.0
	Tinggi	Count	6	13	19
		Expected Count	9.7	9.3	19.0
Total		Count	28	27	55
		Expected Count	28.0	27.0	55.0

Chi-Square Tests

Uni	Value	a s _{df}	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	4.340 ^a	1	.037		
Continuity Correction ^b	3.239	1	.072		LOG
Likelihood Ratio	4.415	1	.036		
Fisher's Exact Test				.050	.035
Linear-by-Linear Association	4.261	1	.039		
N of Valid Cases	55				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 9.33. b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient	.270	.037
N of Valid Cases	55	

Iniversitas Esa Unggul

	Chi-Squared	df	Asymptotic Significance (2-sided)
Breslow-Day Tarone's	.000	0	

Tests of Conditional Independence

E			Asymptotic Significance			
	Chi-Squared	df	(2-sided)			
Cochran's	4.340	1	.037			
Mantel-Haenszel	3.180	1	.075			

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Mantel-Haenszel Common Odds Ratio Estimate

	Estimate		3.405		
	ln(Estimate)		1.225		
Standardized Error of In(Estimate)					
Asympton	tic Significance (2-sided)		.041		
Asymptotic 95%	Common Odds Ratio	Lower Bound	1.050		
Confidence Interval		Upper Bound	11.044		
011111111	ln(Common Odds Ratio)	Lower Bound	.048		
F ca	IInaai	Upper Bound	2.402		

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

Jumlah Paritas * Berat Bayi Lahir Crosstab

				ayi Lahir	
			BBLR	Normal	Total
Jumlah Paritas	Beresiko BBLR	Count	19	10	29
		Expected Count	14.8	14.2	29.0
	Tidak Beresiko BBLR	Count	9	17	26
		Expected Count	13.2	12.8	26.0
	Total	Count	28	27	55
		Expected Count	28.0	27.0	55.0

Esa Unggul

		em squi	11 0 1 0 0 0 0		
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square Continuity Correction ^b	5.238 ^a 4.075	1	.022 .044		
Likelihood Ratio Fisher's Exact Test	5.324	a s	.021	.031	U _{.021} v e
Linear-by-Linear Association	5.143	1	.023	.031	.021
N of Valid Cases	55				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.76. b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient	.295	.022
N of Valid Cases	5 <mark>5</mark>	

Tests of Homogeneity of the Odds Ratio

	9		
			Asym <mark>p</mark> totic Sig <mark>ni</mark> ficance
	Chi-Squared	df	(2-sided)
Breslow-Day	.000	0	
Tarone's	.000	0	

Tests of Conditional Independence

1 ests of Conditional Independence					
			Asymptotic Significance		
	Chi-Squared	df	(2-sided)		
Cochran's	5.238	1	.022		
Mantel-Haenszel	4.001	1	.045		

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Esa Unggul

Tranter Trues	iszer common odds rute	o Bounnett	
	Estimate		3.589
	ln(Estimate)		1.278
Stand <mark>ardiz</mark>	ed Error of ln(Estimate)		.568
Asymp <mark>toti</mark>	c Significance (2-sided)		.024
Asymptotic 95%	Common Odds Ratio	Lower Bound	1.179
Confidence Interval		Upper Bound	10.924
Universi	In(Common Odds Ratio)	Lower Bound	.165
Ec a	Ilbaani	Upper Bound	2.391

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

Jarak Kehamilan * Berat Bayi Lahir Crosstab

			Berat Ba	ıyi Lahir	
			BBLR	Normal	Total
Jarak Kehamilan	Beresiko BBLR	Count	19	10	29
		Expected Count	14.8	14.2	29.0
	Tidak Beresiko BBLR	Count	9	17	26
		Expected Count	13.2	12.8	26.0
	Total	Count	28	27	55
		Expected Count	28.0	27.0	55.0

Chi-Square Tests

	Uni	Value	a s _{df}	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Sq		5.238 ^a	1	.022		162
Continuity Corre		4.075	1	.044		
Likelihood Ra	tio	5.324	1	.021		
Fisher's Exact					.031	.021
Linear-by-Line Association		5.143	1	.023		
N of Valid Car		55				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.76. b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient	.295	.022
N of Valid Cases	55	

Iniversitas Esa Unggul

			Asympt <mark>ot</mark> ic Signific <mark>a</mark> nce
	Chi-Squared	df	(2-sided)
Breslow-Day	.000	0	
Tarone's	.000	0	

Tests of Conditional Independence

	reisitas		Asymptotic
			Significance
	Chi-Squared	df	(2-sided)
Cochran's	5.238	1	.022
Mantel-Haenszel	4.001	1	.045

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Mantel-Haenszel Common Odds Ratio Estimate

		Estimate		3.589		
	ln(Estimate)					
S	Standardized Error of In(Estimate)					
I	Asymptot	ic Significance (2-sided)		.024		
Asymptotic 9	5%	Common Odds Ratio	Lower Bound	1.179		
Confidence Inte	erval		Upper Bound	10.924		
0111		ln(Common Odds Ratio)	Lower Bound	.165		
		Unddi	Upper Bound	2.391		

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

Pertambahan BB Ibu Selama Kehamilan Berdasarkan IMT Ibu Sebelum Hamil * Berat Bayi Lahir Crosstab

			Berat Ba	ayi Lahir	
			BBLR	Normal	Total
Pertambahan BB Ibu	Tidak Normal	Count	19	9	28
Selama Kehamilan		Expected Count	14.3	13.7	28.0
Berdasarkan IMT Ibu	Normal	Count	9	18	27
Sebelum Hamil		Expected Count	13.7	13.3	27.0
Total		Count	28	27	55
		Expected Count	28.0	27.0	55.0

Esa Unggul

University Esa (

		CIII-5qui	tre reses		
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases	6.555 ^a 5.247 6.692 6.436 55		.010 .022 .010	.015	Unive .011

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 13.25. b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient N of Valid Cases	.326 55	.010

Tests of Homogeneity of the Odds Ratio

1 6565 (of Homogenery	or the out	10 1100010
		10	Asymptotic Significance
	Chi-Squared	df	(2-sided)
Breslow-Day	.000	0	
Tarone's	.000	0	

Tests of Conditional Independence

1 4545	or committeem	marepenare	1100
			Asymptotic
			Significance
	Chi-Squared	df	(2-sided)
Cochran's	6.555	1	.010
Mantel-Haenszel	5.151	1	.023

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Esa Unggul

	Estimate		4.222
	ln(Estimate)		1.440
Stan <mark>dard</mark>	ized Error of ln(Estimate)		.575
Asympto	tic Significance (2-sided)		.012
Asymptotic 95%	Common Odds Ratio	Lower Bound	1.369
Confidence Interval		Upper Bound	13.026
univers	In(Common Odds Ratio)	Lower Bound	.314
Eco	Lingual	Upper Bound	2.567

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

Status Gizi Ibu Berdasarkan LILA * Berat Bayi Lahir

Crosstab

			Berat Ba	ayi Lahir	
			BBLR	Normal	Total
Status Gizi Ibu	KEK	Count	19	8	27
Berdasarkan LILA		Expected Count	13.7	13.3	27.0
	Tidak KEK	Count	9	19	28
		Expected Count	14.3	13.7	28.0
Total	Count		28	27	55
		Expected Count	28.0	27.0	55.0

Chi-Square Tests

Uni	v e r s i 1 Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	8.037 ^a	1	.005		L30
Continuity Correction ^b	6.581	1	.010		
Likelihood Ratio	8.248	1	.004		
Fisher's Exact Test				.007	.005
Linear-by-Linear	7.891	1	.005		
Association	7.091	1	.003		
N of Valid Cases	55				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 13.25. b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient	.357	.005
N of Valid Cases	55	

Iniversitas Esa Unggul

	Chi-Squared	df	Asymptotic Significance (2-sided)
Breslow-Day Tarone's	.000	0	

Tests of Conditional Independence

	reisitas		Asymptotic
			Significance
	Chi-Squared	df	(2-sided)
Cochran's	8.037	1	.005
Mantel-Haenszel	6.461	1	.011

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Mantel-Haenszel Common Odds Ratio Estimate

	Estimate		5.014			
	ln(Estimate)		1.612			
Sta	Standardized Error of ln(Estimate)					
As	ymptotic Significance (2-sided)		.006			
Asymptotic 95%	Common Odds Ratio	Lower Bound	1.595			
Confidence Inter	val	Upper Bound	15.758			
	In(Common Odds Ratio)	Lower Bound	.467			
	<u>a Unddi</u>	Upper Bound	2.757			

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

Jumlah Tablet yang dikonsumsi * Berat Bayi Lahir Crosstab

			Berat Ba	ayi Lahir	
			BBLR	Normal	Total
Jumlah Tablet yang	Tidak Patuh	Count	21	12	33
dikonsumsi	1	Expected Count	16.8	16.2	33.0
	P atuh	Count	7	15	22
		Expected Count	11.2	10.8	22.0
Total		Count	28	27	55
		Expected Count	28.0	27.0	55.0

Esa Unggul

		CIII-5qui			
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases	5.347 ^a 4.150 5.445 5.250 55		.021 .042 .020	.029	U.020

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 10.80. b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient	.298	.021
N of Valid Cases	5 <mark>5</mark>	

Tests of Homogeneity of the Odds Ratio

reses of Homogeneity of the Odds Ratio						
			Asym <mark>p</mark> totic Sig <mark>ni</mark> ficance			
	Chi-Squared	df	(2-sided)			
Breslow-Day	.000	0				
Tarone's	.000	0				

Tests of Conditional Independence

			Asymptotic Significance
	Chi-Squared	df	(2-sided)
Cochran's	5.347	1	.021
Mantel-Haenszel	4.074	1	.044

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Esa Unggul

	Estimate		3.750			
ln(Estimate)						
Stan <mark>dard</mark>	Standardized Error of ln(Estimate)					
Asym <mark>pto</mark>	otic Significance (2-sided)		.023			
Asymptotic 95%	Common Odds Ratio	Lower Bound	1.195			
Confidence Interval		Upper Bound	11.768			
	ln(Common Odds Ratio)	Lower Bound	.178			
Eco	Linaai	Upper Bound	2.465			

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

HB Terakhir Ibu * Berat Bayi Lahir

Crosstab

			Berat Ba	ayi Lahir	
			BBLR	Normal	Total
HB Terakhir Ibu	Anemia	Count	20	10	30
_		Expected Count	15 .3	14.7	30.0
	Tidak Anemia	Count	8	17	25
		Expected Count	12.7	12.3	25.0
Tota	ıl	Count	28	27	55
		Expected Count	28.0	27.0	55.0

Chi-Square Tests

Uni	v e r s i 1 Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	6.557 ^a	1	.010		L30
Continuity Correction ^b	5.244	1	.022		
Likelihood Ratio	6.694	1	.010		
Fisher's Exact Test				.015	.011
Linear-by-Linear	6.438	1	.011		
Association	0.436	1	.011		
N of Valid Cases	55				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.27. b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient	.326	.010
N of Valid Cases	55	

Esa Unggul

	Chi Cayanad	16	Asymptotic Significance
	Chi-Squared	df	(2-sided)
Breslow-Day	.000	0	
Tarone's	.000	0	

Tests of Conditional Independence

	eisitas		Asymptotic Significance
	Chi-Squared	df	(2-sided)
Cochran's	6.557	1	.010
Mantel-Haenszel	5.148	1	.023

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Mantel-Haenszel Common Odds Ratio Estimate

		Estimate		4.250			
	ln(Estimate)						
	Standardized Error of In(Estimate)						
	Asymptot	cic Significance (2-sided)		.012			
Asymptotic	95%	Common Odds Ratio	Lower Bound	1.370			
Confidence In	iterval		Upper Bound	13.188			
		In(Common Odds Ratio)	Lower Bound	.315			
	52	Linaai	Upper Bound	2.579			

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

Kunjungan ANC * Berat Bayi Lahir Crosstab

			Berat Ba	ayi Lahir	
			BBLR	Normal	Total
Kunjungan ANC	Beresiko	Count	15	3	18
		Expected Count	9.2	8.8	18.0
	Tidak Be <mark>re</mark> siko	Count	13	24	37
		Expected Count	18.8	18.2	37.0
Tot	tal	Count	28	27	55
		Expected Count	28.0	27.0	55.0

Esa Unggul

		C 10 4 1-1	it c i ests		
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases	11.256 ^a 9.410 12.035 11.051 55	l l las	.001 .002 .001	.001	U.001 V e

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.84. b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient	.412	.001
N of Valid Cases	5 <mark>5</mark>	

Tests of Homogeneity of the Odds Ratio

	or morning chief		
			Asym <mark>pt</mark> otic Sig <mark>ni</mark> ficance
	Chi-Squared	df	(2-sided)
Breslow-Day	.000	0	
Tarone's	.000	0	

Tests of Conditional Independence

			Asymptotic Significance
	Chi-Squared	df	(2-sided)
Cochran's	11.256	1	.001
Mantel-Haenszel	9.239	1	.002

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Iniversitas Esa Unggul

	Estimate		9.231
	ln(Estimate)		2.223
Stan <mark>dard</mark>	ized Error of ln(Estimate)		.720
Asympto	tic Significance (2-sided)		.002
Asymptotic 95%	Common Odds Ratio	Lower Bound	2.250
Confidence Interval		Upper Bound	37.863
univers	In(Common Odds Ratio)	Lower Bound	.811
Eco	Linaai	Upper Bound	3.634

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

Penyakit Penyerta Ibu selama Kehamilan * Berat Bayi Lahir

Crosstab

			Berat Ba	ayi Lahir	
			BBLR	Normal	Total
Penyakit Penyerta Ibu	Ada	Count	23	14	37
selama Kehamilan		Expected Count	18.8	18.2	37.0
	Ti <mark>da</mark> k Ada	Count	5	13	18
		Expected Count	9.2	8.8	18.0
Total		Count	28	27	55
		Expected Count	28.0	27.0	55.0

Chi-Square Tests

Uni	versit Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	5.728 ^a	1	.017		
Continuity Correction ^b	4.435	1	.035		
Likelihood Ratio	5.876	1	.015		
Fisher's Exact Test				.023	.017
Linear-by-Linear Association	5.624	1	.018		
N of Valid Cases	55				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.84. b. Computed only for a 2x2 table

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal Contingency Coefficient	.307	.017
N of Valid Cases	55	

Esa Unggul

	0 1		
			Asymptotic Significance
	Chi-Squared	df	(2-sided)
Breslow-Day	.000	0	
Tarone's	.000	0	

Universitas

Tests of Conditional Independence

			Asymptotic
			Significance
	Chi-Squared	df	(2-sided)
Cochran's	5.728	1	.017
Mantel-Haenszel	4.355	1	.037

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

Mantel-Haenszel Common Odds Ratio Estimate

	Estimate		4.271
	ln(Estimate)		1.452
Standardi	zed Error of ln(Estimate)		.626
Asympto	tic Significance (2-sided)		.020
Asymptotic 95%	Common Odds Ratio	Lower Bound	1.252
Confidence Interval		Upper Bound	14.568
	In(Common Odds Ratio)	Lower Bound	.225
		Upper Bound	2.679

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

Universitas Esa Unggul

LOGISTIC REGRESSION VARIABLES BerBay /METHOD=ENTER UI PI JumPar JarKeh PertBB LILA JumTab HB KunANC PenyIbu /PRINT=CORR CI(95) /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Logistic Regression

Notes **Output Created** 23-AUG-2017 08:09:00 Comments Input Data D:\Materi Kuliah\Skripsi\PROPOSAL FIX\SPSS\Data SPSS Skripsi.sav **Active Dataset** DataSet1 Filter <none> Weight <none> Split File <none> N of Rows in Working 55 Data File Missing Value Handling **Definition of Missing** User-defined missing values are treated as missing **Syntax** LOGISTIC REGRESSION VARIABLES BerBay /METHOD=ENTER UI PI JumPar JarKeh PertBB LILA JumTab HB KunANC PenyIbu /PRINT=CORR CI(95) /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). **Processor Time** 00:00:00.05 Resources **Elapsed Time** 00:00:00.08

Case Processing Summary

Unweighted Cases ^a	N	Percent
Selected Cases Included in Analysis	55	100.0
Missing Cases	0	.0
Total	55	100.0
Unselected Cases	0	.0
Total	55	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
BBLR	0
Normal	1

Block 0: Beginning Block

Classification Table^{a,b}

			Predicte	ed
		Berat Ba	ayi Lahir	Percentage
	Observed	BBLR	Normal	Correct
Step 0	Berat Bayi Lahir BBLR	28	0	100.0
	Normal	27	0	.0
	Overall Percentage			50.9

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

	В	S.E.	Wald	df	Sig.	Exp(B)
Step 0 Constant	036	.270	.018	1	.893	.964

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	UI	6.782	1	.009
		PI	4.340	1	.037
		JumPar	5.238	1	.022
		JarKeh	5.238	1	.022
		PertBB	6.555	1	.010
		LILA	8.037	1	.005
		JumTab	5.347	1	.021
		HB	6.557	1	.010
		KunANC	11.256	1	.001
		PenyIbu	5.728	1	.017
	Overall S	Statistics	24.203	10	.007

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	32.773	10	.000
	Block	32. <mark>7</mark> 73	10	.000
	Model	32 <mark>.7</mark> 73	10	.000

Esa Unggul

Universita **Esa** L

gul

Model Summary

Cton	-2 Log	Cox & Snell R	~
Step	likelihood	Square	Square
1	43.455 ^a	.449	.599

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

Classification Table^a

	Offiversi	Predicted				
	Eca	Berat Ba	ayi Lahir	Percentage		
	Observed		BBLR	Normal	Correct	
Step 1	Berat Bayi Lahir	BBLR	20	8	71.4	
		Normal	3	24	88.9	
	Overall Perce	ntage			80.0	

a. The cut value is .500

Variables in the Equation

			•	tti ittbies iii	the Equation	011			
								95% C.I.fe	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	UI	2.697	1.128	5.721	1	.017	14.840	1.627	135.312
	PI	1.548	.909	2.902	1	.088	4.703	.792	27.924
	JumPar	.290	.961	.091	1	. <mark>76</mark> 3	1.336	.203	8.782
	JarKeh	1.707	1.109	2.372	1	.124	5.513	.628	48.4 <mark>16</mark>
	PertBB	1.496	1.044	2.055	1	.152	4.464	.577	34.522
	LILA	.825	1.089	.574	1	.449	2.282	.270	19.288
	JumTab	1.464	.899	2.651	1	.103	4.321	.742	25.160
	HB	-2.941	1.526	3.716	1	.054	.053	.003	1.050
	KunANC	2.658	1.640	2.627	1	.105	14.273	.573	355.413
	PenyIbu	1.767	1.087	2.642	1	.104	5.856	.695	49.349
	Constant	-5.766	2.081	7.677	1	.006	.003		

a. Variable(s) entered on step 1: UI, PI, JumPar, JarKeh, PertBB, LILA, JumTab, HB, KunANC, PenyIbu.

Universita **Esa** L

gul

Correlation Matrix

			Constant	UI	PI	JumPar	JarKeh	PertBB	LILA	JumTab	НВ	KunANC	PenyIbu
St	ep 1	Constant	1.000	722	387	228	483	391	079	439	.611	774	285
		UI	722	1.000	.245	051	.365	.311	.095	.227	454	.485	.417
		PI	387	.245	1.000	.137	.204	.191	.001	.253	275	.045	.267
		JumPar	228	051	.137	1.000	263	.081	181	186	023	.252	267
		JarKeh	483	.365	.204	263	1.000	.163	.253	.244	653	.247	.282
		PertBB	391	.311	.191	.081	.163	1.000	366	004	252	.080	469
		LILA	079	.095	.001	181	.253	366	1.000	.102	421	.044	109
		JumTab	439	.227	.253	186	.244	004	.102	1.000	374	.335	.036
		HB	.611	454	275	023	653	252	421	374	1.000	537	182
		KunANC	774	.485	.045	.252	.247	.080	.044	.335	537	1.000	149
		PenyIbu	285	.417	.267	267	.282	.469	109	.036	182	149	1.000

LOGISTIC REGRESSION VARIABLES BerBay /METHOD=ENTER UI PI JarKeh PertBB JumTab HB KunANC PenyIbu LILA /PRINT=CORR CI(95) /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Logistic Regression

Notes

Output	Created	23-AUG-2017 08:31:45			
-	nments				
Input	Data	D:\Materi			
		Kuliah\Skripsi\PROPOSAL			
Haiv		FIX\SPSS\Data SPSS Skripsi.sav			
OTITY	Active Dataset	DataSet1			
E c	Filter	<none></none>			
	Weight	<none></none>			
	Split File	<none></none>			
	N of Rows in Working	55			
	Data File				
Missing Value Handling	Definition of Missing	User-defined missing values are			
		treated as missing			
Sy	ntax	LOGISTIC REGRESSION			
		VARIABLES BerBay			
		/METHOD=ENTER UI PI JarKeh			
		PertBB JumTab HB KunANC			
		PenyIbu LILA			
		/PRINT=CORR CI(95)			
		/CRITERIA=PIN(0.05) POUT(0.10)			
Th.	D T.	ITERATE(20) CUT(0.5).			
Resources	Processor Time	00:00:00.02			
	Elapsed Time	00:00:00.08			

Esa Unggul

Case Processing Summary

Unwei	N	Percent	
Selected Cases	Included in Analysis	55	100.0
	Missing Cases	0	.0
1	Total	55	100.0
Unsel	0	.0	
	Total	55	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

	8
Original Value	Internal Value
BBLR	0
Normal	1

Block 0: Beginning Block

Classification Table^{a,b}

			Predicted				
			Berat Ba	ayi Lahir	Percentage		
	Observed	l	BBLR	N <mark>or</mark> mal	Correct		
Step 0	Berat Bayi Lahi <mark>r</mark>	BBLR	28	0	100.0		
		Normal	27	0	.0		
	Overall Perce	ntage			50.9		

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

-	01111	В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	036	.270	.018	1	.893	.964

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	UI	6.782	1	.009
		PI	4.340	1	.037
		JarKeh	5.238	1	.022
		PertBB	6.555	1	.010
		JumTab	5.347	1	.021
		HB	6.557	1	.010
		KunANC	11.256	1	.001
		P <mark>en</mark> yIbu	5.728	1	.017
		LILA	8.037	1	.005
	Overall S	Statistics Statistics Statistics	24.184	9	.004

Esa Unggul

Block 1: Method = Enter
Omnibus Tests of Model Coefficients

•	Ommous Tests of Wiodel Coefficients									
		Chi-square	df	Sig.						
Step 1	Step	32.682	9	.000						
	Block	32.682	9	.000						
	Model	32.682	9	.000						

Model Summary

	-2 Log	Cox & Snell R	Nagelkerke R
Step	likelihood	Square	Square
1	43.546 ^a	.448	.597

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted				
			Berat	Bayi Lahir	Percentage		
	Observe	ed	BBLR	Normal	Correct		
Step 1	Berat Bayi	BBLR	19	9	67.9		
	Lahir	Normal	4	23	85.2		
	Overall Perce	en <mark>t</mark> age			76.4		

a. The cut value is .500

Variables in the Equation

								95% C.I.for EXP(B)		
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	
Step 1 ^a	UI	2.721	1.119	5.912	1	.015	15.190	1.695	136.134	
	PI	1.515	.896	2.861	1	.091	4.550	.786	26.329	
	JarKeh	1.799	1.063	2.864	1	.091	6.045	.752	48.574	
	PertBB	1.475	1.037	2.020	1	.155	4.370	.572	33.385	
	JumTab	1.517	.877	2.996	1	.083	4.560	.818	25.418	
	HB	-2.936	1.509	3.784	1	.052	.053	.003	1.023	
	KunANC	2.539	1.565	2.634	1	.105	12.669	.590	271.986	
	PenyIbu	1.859	1.049	3.141	1	.076	6.419	.821	50.164	
	LILA	.885	1.067	.688	1	.407	2.423	.300	19.607	
	Constant	-5.637	1.991	8.015	1	.005	.004			

a. Variable(s) entered on step 1: UI, PI, JarKeh, PertBB, JumTab, HB, KunANC, PenyIbu, LILA.

Esa Unggul

Universita **Esa** (

Jyui

Correlation Matrix

			Constant	UI	PI	JarKeh	PertBB	JumTab	HB	KunANC	PenyIbu	LILA
	Step	Constant	1.000	750	365	5 74	396	487	.617	751	366	122
	1	UI	750	1.000	.247	.360	.322	.200	- .450	.505	.419	.088
		PI	365	.247	1.000	.257	.180	.276	274	.002	.306	.031
		JarKeh	574	.360	.257	1.000	.201	.197	678	.318	.233	.215
		PertBB	396	.322	.180	.201	1.000	.006	255	.068	.511	356
		JumTab	487	.200	.276	.197	<u>s.006</u>	1.000	375	.391	035	U r.067 e r
ı		HB	.617	450	274	678	255	375	1.000	543	190	430
1		KunANC	751	.505	.002	.318	.068	.391	543	1.000	094	.088
ı		PenyIbu	366	.419	.306	.233	.511	035	190	094	1.000	170
L		LILA	122	.088	.031	.215	356	.067	430	.088	170	1.000

Universita

Esa Unggul