Model Persediaan Probabilistik (Bagian 1)

Roesfiansjah Rasjidin

Program Studi Teknik Industri Fakultas Teknik – Univ. Esa Unggul

Situasi aktual sistem persediaan

- * Demand tidak diketahui dengan pasti
- * Lead time juga stokastik
- * Parameter lainnya tidak pasti

Penting untuk membuat distribusi probabilitas tiap parameter.

Lingkup model dan kriteria

Lingkup model yang dibahas:

- Item tunggal
- * Demand stokastik
- * Lead time stokastik

Kriteria:

 Minimasi ekspektasi biaya persediaan (carrying cost, order cost & shortage cost).

Klasifikasi model persediaan probabilistik

- * Continuous-review model

 Review dilakukan berkesinambungan ketika tingkat
 persediaan pada tingkat pemesanan ulang maka dipesan
 sejumlah kuantitas tertentu.
- * Periodic-review model

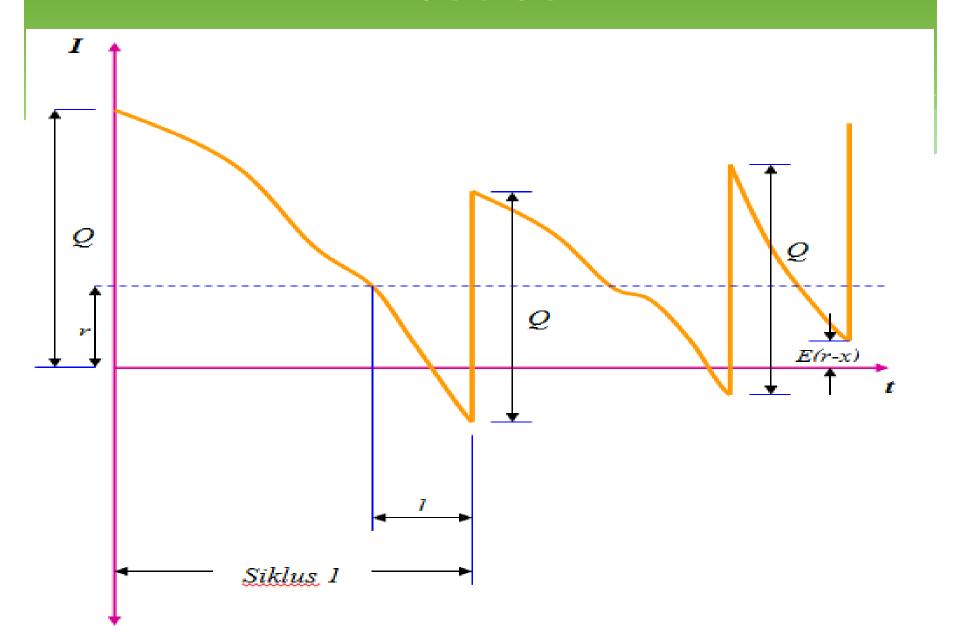
 Review dilakukan periodik dimana pemesanan akan dilakukan dengan kuantitas hingga mencapai tingkat persediaan R jika tingkat persediaan pada saat review dibawah tingkat persediaan pemesanan ulang.

CONTINUOUS REVIEW MODEL: BACKORDER CASE

Pengertian backorder

* Kekurangan persediaan untuk memenuhi permintaan, dapat dipenuhi setelah memiliki persediaan di waktu mendatang

Deskripsi dan tujuan model


* Deskripsi:

Tingkat persediaan ditinjau berkesinambungan dan pemesanan sejumlah Q dilakukan saat tingkat persediaan mencapai tingkat pemesanan ulang r.

* Tujuan:

Menemukan nilai optimal Q dan r yang meminimumkan total ekspektasi biaya persediaan per unit waktu.

Ilustrasi

Notasi model

```
* D = rata-rata laju permintaan, unit/tahun
* h = biaya simpan per unit per tahun (iC)
* Ī = rata-rata persediaan dari sejumlah siklus
* π = biaya kekurangan per unit
* A = biaya pesan per sekali pesan
* x = rata-rata permintaan selama lead time
* z = tingkat persediaan terendah sebelum pesanan datang pada suatu siklus
* y = tingkat persediaan tertinggi setelah pesanan datang pada suatu siklus
```

Notasi model

```
* g(x,t)
                       fungsi densitas probabilitas (p.d.f)
  bersyarat permintaan x sepanjang lead time t dimana x > 0
* I(t)
               p.d.f untuk lead time t, dimana t > 0
* f(x) =
               p.d.f untuk permintaan x selama lead time
               jumlah yang dipesan per siklus
               tingkat persediaan pemesanan ulang
* S(x) =
               kuantitas kekurangan per siklus
* \bar{S}(x) =
               ekspektasi kekurangan per siklus
               jumlah atau frekuensi pemesanan per tahun,
* N =
  N=D/Q
```

Permintaan dan Total Biaya Tahunan

Absolut p.d.f permintaan x selama lead time adalah:

*
$$f(x) = \int_{0}^{\infty} g(x,t)l(t)dt$$

Total biaya persediaan tahunan TC(Q,r) mencakup :

- * Ekspektasi rata-rata biaya pesan tahunan
- * Ekspektasi biaya simpan
- * Ekspektasi biaya kekurangan

Ordering cost

* Biaya pesan tahunan adalah $A\frac{D}{Q}$

Carrying cost

* Biaya simpan tahunan adalah

$$h\bar{I}$$

, dimana
$$\bar{I} = \frac{Q}{2} + r - Dl$$

Backorder cost

Ketika sebuah kekurangan (shortage) terjadi, maka kuantitas shortage adalah:

*
$$S(x) = \begin{cases} 0, & jika \ x \le r \\ x - r, & jika \ x > r \end{cases}$$

Ekspektasi kuantitas yang kurang per siklus, $\bar{S}(x)$ adalah:

$$\bar{S}(x) = \int_0^\infty S(x)f(x)dx = \int_r^\infty (x - r)f(x)dx$$

Ekspektasi kekurangan per tahun adalah:

*
$$\bar{S}(x) * N = \bar{S}(x) * D/Q$$

Total biaya persediaan tahunan

*
$$TC(Q,R) = \frac{AD}{Q} + h\left(\frac{Q}{2} + r - Dl\right) + \frac{\pi D}{Q}\bar{S}(x)$$

Nilai optimal Q dan r

Persamaan 1:

$$* Q^* = \sqrt{\frac{2D[A + \pi \bar{S}(x)]}{h}}$$

Persamaan 2:

$$* \int_{r^*}^{\infty} f(x) dx = \frac{hQ^*}{\pi D}$$

Iterasi Perhitungan nilai r* dan Q*

- 1. Misalkan $\bar{S}(x) = 0$ dan hitung $Q^* = Q_1 = \sqrt{2AD/h}$, dimana subscript dari Q (yaitu 1) menunjukkan nomor iterasi.
- 2. Gunakan persamaan 2 untuk menemukan nilai r_i yang terkait dengan nilai Q_i.
- 3. Gunakah r_i untuk menghitung $\bar{S}(x)_i$, untuk selanjutnya digunakan untuk menghitung nilai Q_i yang baru.
- 4. Hitung r_i melalui persamaan 2 dengan menggunakan nilai Q_i yang diperoleh dari tahap 3.
- 5. Ulangi tahap 3 dan 4 hingga dua set nilai r dan Q yang berurutan mempunyai nilai yang hampir sama (approximately equal)
- 6. Set nilai r dan Q yang terakhir dihitung pada langkah 5 merupakan nilai-nilai optimal untuk Q* dan r*.

DISKUSI DAN TANYA JAWAB