EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Universitas Esa Unggul


Kampus Emas UEU - Jakarta Barat

Phone : 021-5674223, ext 282
Fax :
E-mail : [email protected]
Website : http://library.esaunggul.ac.id

Support (Customer Service) :
[email protected]








Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Astrid Chrisafi




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely
Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

Still Confuse?
Please read our User Guide

Keyword
Mode
Expanded Search (for Free text search only)
 

UEU » Undergraduate Theses » Teknik Informatika
Posted by [email protected] at 21/11/2024 12:52:26  •  83 Views


KOMPARASI METODE NAIVE BAYES, K-NEAREST NEIGHBOR, DAN RANDOM FOREST UNTUK PREDIKSI TERJADI PRESIPITASI

Created by :
Ranggi Cahyana Mariandani ( 20210801293 )



SubjectKOMPARASI
NAIVE BAYES
K-NEAREST NEIGHBOR
RANDOM FOREST
PRESIPITASI
Alt. Subject COMPARISON
NAIVE BAYES
K-NEAREST NEIGHBOR
RANDOM FOREST
PRESIPITATION
KeywordKomparasi
Data Mining
Na�ve Bayes
K-Nearest Neighbor
Random Forest
Presipitasi
Jambi.

Description:

Jalannya aktivitas masyarakat di Jambi kota dapat dipengaruhi oleh kondisi curah hujan, seperti bidang pertanian dan perkebunan kelapa sawit. Oleh karena itu prediksi presipitasi dengan akurasi terbaik perlu dibuat sehingga dapat dimanfaatkan oleh masyarakat. Metode klasifikasi algoritma Naive Bayes, KNearest Neighbor, dan Random Forest merupakan metode klasifikasi Data Mining yang digunakan untuk komparasi prediksi presipitasi pada penelitian ini, data yang digunakan dari BMKG Indonesia tahun 2015 hingga tahun 2023 dengan empat variabel. Setelah dilakukan pengujian dengan data testing menggunakan 2 class hasil akurasi 76,56% menunjukkan bahwa algoritma K Nearest Neighbor (KNN) dan Random Forest, selanjutnya pengujian data testing menggunakan 6 class nilai akurasi 63,63% dengan menggunakan algoritma Naive Bayes. Hal tersebut menunjukkan bahwa menggunakan 2 class dengan algoritma K-Nearest Neighbor dan Random Forest layak dijadikan model algoritma terbaik untuk prediksi terjadinya presipitasi, dan digunakan untuk prediksi presipitasi curah hujan harian selanjutnya

Contributor:
  1. AGUNG MULYO WIDODO, ST, M.Sc
Date Create:21/11/2024
Type:Text
Format:PDF
Language:Indonesian
Identifier:UEU-Undergraduate-20210801293
Collection ID:20210801293


Source :
Undergraduate Theses of Informastics Engineering

Relation Collection:
Fakultas Ilmu Komputer

Coverage :
Civitas Akademika Universitas Esa Unggul

Rights :
@2024 Perpustakaan Universitas Esa Unggul


Publication URL :
https://digilib.esaunggul.ac.id/komparasi-metode-naive-bayes-knearestneighbor-dan-random-forest-untuk-prediksi-terjadi-presipitasi-36621.html




[ Free Download - Free for All ]

  1.  UEU-Undergraduate-36621-COVER.Image.Marked.pdf - 381 KB
  2.  UEU-Undergraduate-36621-HALAMAN PENGESAHAN.Image.Marked.pdf - 587 KB
  3.  UEU-Undergraduate-36621-HALAMAN PUBLIKASI.Image.Marked.pdf - 381 KB
  4.  UEU-Undergraduate-36621-HALAMAN KEASLIAN.Image.Marked.pdf - 497 KB
  5.  UEU-Undergraduate-36621-ABSTRAK.Image.Marked.pdf - 428 KB
  6.  UEU-Undergraduate-36621-KATA PENGANTAR.Image.Marked.pdf - 433 KB
  7.  UEU-Undergraduate-36621-DAFTAR ISI.Image.Marked.pdf - 775 KB
  8.  UEU-Undergraduate-36621-DAFTAR PUSTAKA.Image.Marked.pdf - 540 KB
  9.  UEU-Undergraduate-36621-BAB1.Image.Marked.pdf - 633 KB

[ FullText Content - Please, register first ]

  1. UEU-Undergraduate-36621-BAB2.Image.Marked.pdf - 988 KB
  2. UEU-Undergraduate-36621-BAB3.Image.Marked.pdf - 842 KB
  3. UEU-Undergraduate-36621-BAB4.Image.Marked.pdf - 2068 KB
  4. UEU-Undergraduate-36621-BAB5.Image.Marked.pdf - 501 KB

 10 Similar Document...

     No similar subject found !

 10 Related Document...






HELP US !
You can help us to define the exact keyword for this document by clicking the link below :

Bayes , Data , Data Mining , Forest , Jambi. , K-Nearest , K-Nearest Neighbor , Komparasi , Mining , Na�ve , Na�ve Bayes , Neighbor , Presipitasi , Random , Random Forest



POLLING

Bagaimana pendapat Anda tentang repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan




158443924


Visitors Today : 4
Total Visitor : 1970127

Hits Today : 84904
Total Hits : 158443924

Visitors Online: 1


Calculated since
16 May 2012

You are connected from 172.17.121.29
using Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; [email protected])


UEU Digital Repository Feeds


Copyright © UEU Library 2012 - 2025 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan