EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Universitas Esa Unggul


Kampus Emas UEU - Jakarta Barat

Phone : 021-5674223, ext 282
Fax :
E-mail : [email protected]
Website : http://library.esaunggul.ac.id

Support (Customer Service) :
[email protected]








Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Astrid Chrisafi




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely
Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

Still Confuse?
Please read our User Guide

Keyword
Mode
Expanded Search (for Free text search only)
 

UEU » Proceeding » Teknik Informatika
Posted by [email protected] at 23/08/2021 01:17:18  •  567 Views


KOMPARASI PERFORMANSI ALGORITMA PENGKLASIFIKASI KNN, BAGGING DAN RANDOM FOREST UNTUK PREDIKSI KANKER PAYUDARA

Created by :
Agung Mulyo Widodo ( 0021017305 )
Nizirwan Anwar ; Bambang Irawan ; Lista Meria ; Andika Wisnujati



SubjectKANKER
PEMODELAN PREDIKTIF
Alt. Subject BREAST CANCER
CLASSIFICATION TECHNIQUES
KeywordPREDIKSI
KANKER PAYUDARA

Description:

Pemodelan prediktif menggunakan teknik klasifikasi adalah salah satu cara data mining digunakan untuk mendukung sistem pengambilan keputusan. Banyak teknik pembelajaran mesin dimasukkan ke dalam pengembangan model klasifikasi prediktif ini. Penelitian ini membandingkan akurasi algoritma klasifikasi, khususnya algoritma Bagging, KNN, dan Random forest, ketika digunakan dengan dataset yang sama untuk mendiagnosis kanker payudara. Berdasarkan hasil perbandingan, algoritma KNN memiliki akurasi tertinggi dari ketiga algoritma tersebut, sedangkan algoritma random forest memiliki akurasi yang paling rendah.


Alt. Description

Predictive modeling using classification techniques is one of the ways data mining is used to support decision-making systems. Numerous machine learning techniques were incorporated into the development of this predictive classification model. This study compares the accuracy of classification algorithms, specifically the Bagging, KNN, and Random forest algorithms, when used with the same dataset to diagnose breast cancer. According to the comparison, the KNN algorithm has the highest accuracy of the three algorithms, while the random forest algorithm has the lowest.

Date Create:23/08/2021
Type:Text
Format:pdf
Language:Indonesian
Identifier:UEU-Proceeding-14_0066
Collection ID:14_0066


Source :
Konferensi Nasional Ilmu Komputer (KONIK) 2021

Relation Collection:
Civitas Akademika Universitas Esa Unggul

Coverage :
Fakultas Ilmu Komputer

Rights :
@2021 Perpustakaan Universitas Esa Unggul


Publication URL :
https://digilib.esaunggul.ac.id/komparasi-performansi-algoritma-pengklasifikasi-knn-bagging-dan-random-forest-untuk-prediksi-kanker-payudara-21249.html




[ Free Download - Free for All ]

  1.  UEU-Proceeding-21249-14_0066.pdf - 755 KB

[ FullText Content - Please, register first ]

...No Files...

 10 Similar Document...

     No similar subject found !

 10 Related Document...

     No related subject found !




HELP US !
You can help us to define the exact keyword for this document by clicking the link below :

KANKER , KANKER PAYUDARA , PAYUDARA , PREDIKSI



POLLING

Bagaimana pendapat Anda tentang repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan




154635434


Visitors Today : 1
Total Visitor : 1970008

Hits Today : 30601
Total Hits : 154635434

Visitors Online: 1


Calculated since
16 May 2012

You are connected from 172.17.121.29
using Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; [email protected])


UEU Digital Repository Feeds


Copyright © UEU Library 2012 - 2024 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan