EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Universitas Esa Unggul


Kampus Emas UEU - Jakarta Barat

Phone : 021-5674223, ext 282
Fax :
E-mail : [email protected]
Website : http://library.esaunggul.ac.id

Support (Customer Service) :
[email protected]








Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Astrid Chrisafi




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely
Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

Still Confuse?
Please read our User Guide

Keyword
Mode
Expanded Search (for Free text search only)
 

UEU » Master Theses » Magister Ilmu Komputer
Posted by [email protected] at 23/10/2024 15:20:41  •  105 Views


SISTEM PENGKOREKSI BACAAN QURAN MENGGUNAKAN DEEPSPEECH

Created by :
HAJON MAHDY MAHMUDIN ( 20200804027 )



SubjectSISTEM PENGKOREKSI
BACAAN QURAN
DEEPSPEECH
Alt. Subject CORRECTION SYSTEM
QURAN READING
DEEPSPEECH
KeywordAutomatic Speech Recognition (ASR)
Long Short Term Memmory (LSTM)
Pembelajaran Al-Quran
Recurrent Neural Network (RNN)
Siamese Classifier.

Description:

Penelitian ini bertujuan untuk mengembangkan model klasifikasi audio efektif dalam mengenali kesamaan antara ayat-ayat Al-Quran yang dibacakan oleh berbagai pengguna. Kami membandingkan dua fitur ekstraksi, yaitu MFCC dan MFSC, dalam lima model yang berbeda, termasuk Siamese Classifier dan MaLSTM. Dataset terdiri dari 37 surah Al-Quran dan sampel suara pengguna. Hasil eksperimen menunjukkan model B dengan fitur MFCC memiliki kinerja terbaik, mencapai F1-Score 0.93 pada dataset test, sementara model dengan fitur MFSC mencapai F1-Score 0.94 pada dataset inference. Keterbatasan penelitian ini termasuk jumlah sampel suara pengguna yang terbatas dan variasi cara membaca ayat-ayat. Diperlukan lebih banyak data untuk meningkatkan keakuratan model. Disarankan untuk menggunakan fitur MFCC atau MFSC sesuai kebutuhan aplikasi. Model B atau C dapat dijadikan pilihan terbaik dalam pengenalan kesamaan ayatayat Al-Quran secara audio.

Contributor:
  1. Habibullah Akbar, S.Si., M.Sc., Ph.D.
Date Create:23/10/2024
Type:Text
Format:PDF
Language:Indonesian
Identifier:UEU-Master-20200804027
Collection ID:20200804027


Source :
Master Theses Of Computer Science

Relation Collection:
Fakultas Ilmu Komputer

Coverage :
Civitas Akademika Universitas Esa Unggul

Rights :
@2024 Perpustakaan Universitas Esa Unggul


Publication URL :
https://digilib.esaunggul.ac.id/sistem-pengkoreksi-bacaan-quranmenggunakan-deepspeech-36348.html




[ Free Download - Free for All ]

  1.  UEU-Master-36348-COVER.Image.Marked.pdf - 310 KB
  2.  UEU-Master-36348-HALAMAN PENGESAHAN.Image.Marked.pdf - 633 KB
  3.  UEU-Master-36348-HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI.Image.Marked.pdf - 315 KB
  4.  UEU-Master-36348-ABSTRAK.Image.Marked.pdf - 305 KB
  5.  UEU-Master-36348-KATA PENGANTAR.Image.Marked.pdf - 281 KB
  6.  UEU-Master-36348-DAFATAR ISI.Image.Marked.pdf - 325 KB
  7.  UEU-Master-36348-DAFTAR PUSTAKA.Image.Marked.pdf - 313 KB
  8.  UEU-Master-36348-BAB1.Image.Marked.pdf - 365 KB

[ FullText Content - Please, register first ]

  1. UEU-Master-36348-BAB2.Image.Marked.pdf - 1066 KB
  2. UEU-Master-36348-BAB3.Image.Marked.pdf - 398 KB
  3. UEU-Master-36348-BAB4.Image.Marked.pdf - 956 KB
  4. UEU-Master-36348-BAB5.Image.Marked.pdf - 286 KB

 10 Similar Document...

     No similar subject found !

 10 Related Document...






HELP US !
You can help us to define the exact keyword for this document by clicking the link below :

(ASR) , (LSTM) , (RNN) , Al-Quran , Automatic , Automatic Speech Recognition (ASR) , Classifier. , Long , Long Short Term Memmory (LSTM) , Memmory , Network , Neural , Pembelajaran , Pembelajaran Al-Quran , Recognition , Recurrent , Recurrent Neural Network (RNN) , Short , Siamese , Siamese Classifier. , Speech , Term



POLLING

Bagaimana pendapat Anda tentang repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan




160621677


Visitors Today : 1
Total Visitor : 1970191

Hits Today : 30435
Total Hits : 160621677

Visitors Online: 1


Calculated since
16 May 2012

You are connected from 172.17.121.29
using Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; [email protected])


UEU Digital Repository Feeds


Copyright © UEU Library 2012 - 2025 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan